Пример #1
0
def test_bool():
    api_config = {
        "x": {
            "type": "bool"
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    proposal = gs.suggest(fit_function_bool)

    assert 1 == proposal["x"]
Пример #2
0
def test_categorical():
    api_config = {
        "x": {
            "type": "cat",
            "values": ["exp", "log", "abs"]
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    proposal = gs.suggest(fit_function_cat)

    assert "exp" == proposal["x"]
Пример #3
0
def test_log_space():
    api_config = {
        "x": {
            "type": "real",
            "space": "log",
            "range": (0.1, 100)
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    proposal = gs.suggest(basic_fit_function_10)

    assert pytest.approx(10, 0.1) == proposal["x"]
Пример #4
0
def test_happy_path():
    api_config = {
        "x": {
            "type": "real",
            "space": "linear",
            "range": (-10, 10)
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    proposal = gs.suggest(basic_fit_function)

    assert pytest.approx(-1, 0.1) == proposal["x"]
Пример #5
0
def test_int_values():
    api_config = {
        "x": {
            "type": "int",
            "space": "linear",
            "values": (-10, -2, -1, 0, 10)
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    proposal = gs.suggest(basic_fit_function)

    assert pytest.approx(-1, 0.1) == proposal["x"]
Пример #6
0
def test_timeout_callback():
    api_config = {
        "x": {
            "type": "real",
            "space": "linear",
            "range": (-10, 10)
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    start_time = time()
    proposal = gs.suggest(basic_fit_function, timeout=0.001)
    end_time = time()

    assert pytest.approx(-1, 1) == proposal["x"]
    assert end_time - start_time < 0.1
Пример #7
0
def test_bounds_log():
    min_max_iter = 10
    max_max_iter = 5000
    api_config = {
        "max_iter": {
            "type": "int",
            "space": "log",
            "range": (min_max_iter, max_max_iter)
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    for i in range(10):
        proposal = gs.suggest(more_better_fit_function, seed=i)
        print(proposal)
        assert min_max_iter <= proposal["max_iter"] <= max_max_iter
Пример #8
0
def test_mixed_types():
    api_config = {
        "x": {
            "type": "real",
            "space": "linear",
            "range": (-10, 10)
        },
        "b": {
            "type": "bool"
        },
        "c": {
            "type": "cat",
            "values": ["exp", "log", "abs"]
        },
    }
    transformer = HyperTransformer(api_config)
    gs = GeneticSearch(transformer)
    proposal = gs.suggest(fit_function_mixed_type)
    assert (pytest.approx(-1, 0.1) == proposal["x"] and 1 == proposal["b"]
            and "exp" == proposal["c"])