Пример #1
0
def main():
    parser = get_stimuli_compute_parser()
    args = parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    assert args.set_func, "Must specify set_func"
    args = bs_fit.load_set_func(args)

    compute_aggregate_dump(args, builder=StimuliCompute)
Пример #2
0
def main():
    parser = get_compute_raw_response_parser()
    args = parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    assert args.set_func, "Must specify set_func"
    args = bs_fit.load_set_func(args)

    raw_stimuli_compute = RawStimuliCompute(args)
    input_images = np.load(args.file_path)[:args.batch_size]
    output = raw_stimuli_compute.get_output(input_images)
    print(np.trace(output[:, :args.batch_size]))
Пример #3
0
def main():
    parser = get_circular_var_parser()
    args = parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    assert args.set_func, "Must specify set_func"
    args = bs_fit.load_set_func(args)

    cir_var_compute = CircularVarCompute(args)
    layers = cir_var_compute.layers
    for which_split in range(4):
        cir_var_compute.which_split = which_split
        for layer in tqdm(layers):
            cir_var_compute.compute_save_cir_var(layer)
Пример #4
0
def main():
    parser = get_lucid_stimuli_compute_parser()
    args = parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    assert args.set_func, "Must specify set_func"
    args = bs_fit.load_set_func(args)
    layers = bs_fit.TF_RES18_LAYERS
    if getattr(args, 'layers', None) is not None:
        layers = args.layers.split(',')

    for layer in tqdm(layers):
        layer, image, all_losses = get_vm_model_image_losses(args, layer=layer)
        #layer, image, all_losses = get_lucid_orig_image_losses(args)
        dump_results(args, layer, image, all_losses)
Пример #5
0
def main():
    parser = get_raw_pt_stimuli_compute_parser()
    args = parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    assert args.set_func, "Must specify set_func"
    args = bs_fit.load_set_func(args)

    batch_size = 16
    num_batches = args.num_batches
    #batch_size = 4
    #num_batches = 16
    #for layer in tqdm(['layer2.1.relu', 'layer4.1.relu']):
    layer_list = bs_fit.PT_RES18_LAYERS
    if args.layer_start_idx is not None:
        layer_end_idx = args.layer_start_idx + args.layer_len_idx
        layer_list = layer_list[\
                args.layer_start_idx : layer_end_idx]
    for layer in tqdm(layer_list):
        all_save_results = []
        for start_idx in range(0, num_batches * batch_size, batch_size):
            #stimuli_compute = RawPtStimuliCompute(args, start_idx, batch_size)
            stimuli_compute = FFTRawPtStimuliCompute(
                args, start_idx + (args.global_start_idx or 0), batch_size)
            save_result = stimuli_compute.compute_optimal_stimuli(layer)
            all_save_results.append(save_result)
            del stimuli_compute

        images = []
        loss_vals = []
        actual_response = []

        for save_result in all_save_results:
            images.append(save_result['images'])
            loss_vals.append(save_result['loss_vals'])
            actual_response.append(save_result['actual_response'])

        images = np.concatenate(images, axis=0)
        loss_vals = np.sum(loss_vals, axis=0)
        actual_response = np.concatenate(actual_response, axis=0)
        final_save_result = {
            'images': images,
            'loss_vals': loss_vals,
            'actual_response': actual_response,
        }
        dump_result(final_save_result, args.identifier, layer,
                    args.global_start_idx)