Пример #1
0
    def improve_solution(self, results, model):
        self.processor.load_state_dict(model.copy())
        inputs = TorchUtils.get_tensor_from_numpy(results['inputs'])
        targets = TorchUtils.get_tensor_from_numpy(results['targets'])
        TorchUtils.init_seed(results['seed'], deterministic=True)
        new_results = self.task.run_task(inputs, targets, results['mask'])

        plt.figure()
        plt.plot(results['best_output'])
        plt.plot(new_results['best_output'])
        plt.show()
Пример #2
0
    def search_solution(self, gap):
        self.init_dirs(gap)

        self.task.configs['ring_data']['gap'] = gap
        inputs, targets, mask = self.data_loader.generate_new_data(
            self.configs['algorithm_configs']['processor'], gap=gap)
        self.reset(inputs.shape[0])
        for run in range(self.configs['runs']):
            print(f'########### RUN {run} ################')
            seed = TorchUtils.init_seed(None, deterministic=True)
            results = self.task.run_task(inputs, targets, mask)
            results['seed'] = seed
            self.update_search_stats(results, run)
            if self.best_run == None or results[
                    'best_performance'] < self.best_run['best_performance']:
                self.update_best_run(results, run)
                self.task.plot_results(results)

        self.close_search()
Пример #3
0
def train_surrogate_model(configs, main_folder='training_data'):

    if 'seed' in configs:
        seed = configs['seed']
    else:
        seed = None

    seed = TorchUtils.init_seed(seed, deterministic=True)
    configs['seed'] = seed
    # Get training and validation data
    INPUTS, TARGETS, INPUTS_VAL, TARGETS_VAL, INFO = get_training_data(configs)

    # Train the model
    model_generator = get_algorithm(configs, is_main=True)
    data = model_generator.optimize(INPUTS, TARGETS, validation_data=(INPUTS_VAL, TARGETS_VAL), data_info=INFO)

    results_dir = os.path.join(model_generator.base_dir, main_folder)
    create_directory(results_dir)

    train_targets = INFO['processor']['amplification'] * TorchUtils.get_numpy_from_tensor(TARGETS[data.results['target_indices']][:len(INPUTS_VAL)])
    train_output = INFO['processor']['amplification'] * data.results['best_output_training']
    plot_all(train_targets, train_output, results_dir, name='TRAINING')

    val_targets = INFO['processor']['amplification'] * TorchUtils.get_numpy_from_tensor(TARGETS_VAL)
    val_output = INFO['processor']['amplification'] * data.results['best_output']
    plot_all(val_targets, val_output, results_dir, name='VALIDATION')

    training_profile = data.results['performance_history'] * (INFO['processor']['amplification']**2)

    plt.figure()
    plt.plot(training_profile)
    plt.title(f'Training profile')
    plt.legend(['training', 'validation'])
    plt.savefig(os.path.join(results_dir, 'training_profile'))

    model_generator.path_to_model = os.path.join(model_generator.base_dir, 'reproducibility', 'model.pt')
    return model_generator