return np.exp(loss / label.size) if __name__ == '__main__': batch_size = 128 buckets = [10, 20, 30, 40, 50, 60] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 num_epoch = 2 learning_rate = 0.01 momentum = 0.0 contexts = [mx.context.gpu(i) for i in range(1)] vocab = default_build_vocab(os.path.join(data_dir, 'ptb.train.txt')) init_h = [ mx.io.DataDesc('LSTM_state', (num_lstm_layer, batch_size, num_hidden), layout='TNC') ] init_c = [ mx.io.DataDesc('LSTM_state_cell', (num_lstm_layer, batch_size, num_hidden), layout='TNC') ] init_states = init_c + init_h data_train = BucketSentenceIter(os.path.join(data_dir, 'ptb.train.txt'), vocab, buckets,
return data batch_size = 20 seq_len = 35 num_hidden = 400 num_embed = 200 num_lstm_layer = 8 num_round = 25 learning_rate = 0.1 wd = 0. momentum = 0.0 max_grad_norm = 5.0 update_period = 1 dic = default_build_vocab("./data/ptb.train.txt") vocab = len(dic) # static buckets buckets = [8, 16, 24, 32, 60] init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h X_train_batch = BucketSentenceIter("./data/ptb.train.txt", dic, buckets, batch_size,
#buckets = [32] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 #num_epoch = 25 num_epoch = 2 learning_rate = 0.01 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = [mx.context.gpu(i) for i in range(1)] vocab = default_build_vocab(os.path.join(data_dir, "ptb.train.txt")) init_c = [('l%d_init_c'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h data_train = BucketSentenceIter(os.path.join(data_dir, "ptb.train.txt"), vocab, buckets, batch_size, init_states) data_val = BucketSentenceIter(os.path.join(data_dir, "ptb.valid.txt"), vocab, buckets, batch_size, init_states) if dummy_data: data_train = DummyIter(data_train) data_val = DummyIter(data_val) state_names = [x[0] for x in init_states]
buckets = [] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 num_epoch = 25 learning_rate = 0.01 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False #contexts = [mx.context.gpu(i) for i in range(1)] contexts = mx.context.cpu() vocab = default_build_vocab("./data/ptb.train.txt") def sym_gen(seq_len): return gru_unroll(num_lstm_layer, seq_len, len(vocab), num_hidden=num_hidden, num_embed=num_embed, num_label=len(vocab)) init_h = [('l%d_init_h'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] data_train = BucketSentenceIter("./data/ptb.train.txt", vocab, buckets, batch_size, init_h) data_val = BucketSentenceIter("./data/ptb.valid.txt", vocab, buckets, batch_size, init_h) if dummy_data: data_train = DummyIter(data_train)
stream = p.open(format=p.get_format_from_width(2), channels=1, rate=44100, output=True) if __name__ == '__main__': batch_size = 1 buckets = 30 num_hidden = 2500 num_label = 1500 num_lstm_layer = 2 num_epoch = 326 print(batch_size, buckets, num_hidden, num_lstm_layer, num_epoch) img_data, wave_data = default_build_vocab("./data/data/2.mp4", "./data/data/2.mp3") init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h data_train = BucketSentenceIter(img_data, wave_data, buckets, batch_size, init_states, num_label) model = mx.model.FeedForward.load('model/lip', num_epoch, ctx=mx.context.gpu(1), num_epoch=500, learning_rate=0.5) import logging head = '%(asctime)-15s %(message)s'
buckets = [32] #buckets = [] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 num_epoch = 25 learning_rate = 0.01 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = [mx.context.gpu(i) for i in range(N)] vocab = default_build_vocab("./data/sherlockholmes.train.txt") def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, len(vocab), num_hidden=num_hidden, num_embed=num_embed, num_label=len(vocab)) init_c = [('l%d_init_c'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h data_train = BucketSentenceIter("./data/sherlockholmes.train.txt", vocab, buckets, batch_size, init_states) data_val = BucketSentenceIter("./data/sherlockholmes.valid.txt", vocab, buckets, batch_size, init_states)
return np.exp(loss / label.size) if __name__ == '__main__': batch_size = 128 buckets = [10, 20, 30, 40, 50, 60] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 num_epoch = 2 learning_rate = 0.01 momentum = 0.0 contexts = [mx.context.gpu(i) for i in range(4)] vocab = default_build_vocab( os.path.join(data_dir, 'sherlockholmes.train.txt')) init_h = [('LSTM_init_h', (batch_size, num_lstm_layer, num_hidden))] init_c = [('LSTM_init_c', (batch_size, num_lstm_layer, num_hidden))] init_states = init_c + init_h data_train = BucketSentenceIter( os.path.join(data_dir, 'sherlockholmes.train.txt'), vocab, buckets, batch_size, init_states) data_val = BucketSentenceIter( os.path.join(data_dir, 'sherlockholmes.valid.txt'), vocab, buckets, batch_size, init_states) def sym_gen(seq_len): data = mx.sym.Variable('data') label = mx.sym.Variable('softmax_label')
return loss / pred.shape[0] if __name__ == '__main__': batch_size = 1 buckets = 15 num_hidden = 1500 num_label = 1764 num_lstm_layer = 2 num_epoch = 500 learning_rate = 1 momentum = 0.0 print(batch_size, buckets, num_hidden, num_lstm_layer, num_epoch, learning_rate) contexts = [mx.context.gpu(0)] img_data, wave_data = default_build_vocab("./data/train_x_2.mp4", "./data/train_y_2.mp3") img_data1, wave_data1 = default_build_vocab("./data/train_x_2.mp4", "./data/train_y_2.mp3") def sym_gen(seq_len): return bi_lstm_unroll(num_lstm_layer, seq_len, len(img_data), num_hidden=num_hidden, num_label=num_label) init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h
buckets = [] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 num_epoch = 25 learning_rate = 0.01 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False #contexts = [mx.context.gpu(i) for i in range(1)] contexts = mx.context.cpu() vocab = default_build_vocab("./data/sherlockholmes.train.txt") def sym_gen(seq_len): return gru_unroll(num_lstm_layer, seq_len, len(vocab), num_hidden=num_hidden, num_embed=num_embed, num_label=len(vocab)) init_h = [('l%d_init_h'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] data_train = BucketSentenceIter("./data/sherlockholmes.train.txt", vocab, buckets, batch_size, init_h) data_val = BucketSentenceIter("./data/sherlockholmes.valid.txt", vocab, buckets, batch_size, init_h) if dummy_data: data_train = DummyIter(data_train)
return np.exp(loss / label.size) if __name__ == '__main__': batch_size = 128 buckets = [10, 20, 30, 40, 50, 60] num_hidden = 200 num_embed = 200 num_lstm_layer = 2 num_epoch = 2 learning_rate = 0.01 momentum = 0.0 contexts = [mx.context.gpu(i) for i in range(4)] vocab = default_build_vocab(os.path.join(data_dir, 'sherlockholmes.train.txt')) init_h = [('LSTM_init_h', (batch_size, num_lstm_layer, num_hidden))] init_c = [('LSTM_init_c', (batch_size, num_lstm_layer, num_hidden))] init_states = init_c + init_h data_train = BucketSentenceIter(os.path.join(data_dir, 'sherlockholmes.train.txt'), vocab, buckets, batch_size, init_states) data_val = BucketSentenceIter(os.path.join(data_dir, 'sherlockholmes.valid.txt'), vocab, buckets, batch_size, init_states) def sym_gen(seq_len): data = mx.sym.Variable('data') label = mx.sym.Variable('softmax_label') embed = mx.sym.Embedding(data=data, input_dim=len(vocab), output_dim=num_embed, name='embed')
return loss / pred.shape[0] if __name__ == '__main__': batch_size = 1 buckets = 30 num_hidden = 2500 num_label = 1445 num_lstm_layer = 2 num_epoch = 500 learning_rate = 1 momentum = 0.0 print(batch_size, buckets, num_hidden, num_lstm_layer, num_epoch, learning_rate) contexts = [mx.context.gpu(0)] img_data, wave_data = default_build_vocab("./data/4.mkv", "./data/4.mp3") def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, len(img_data), num_hidden=num_hidden, num_label=num_label) init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h data_train = BucketSentenceIter(img_data, wave_data, buckets, batch_size,
batch_size = args.batch_size buckets = [args.seq_len] num_hidden = args.num_hidden num_embed = args.num_embed num_lstm_layer = args.lstm_layer num_epoch = 1 learning_rate = 0.01 momentum = 0.0 # dummy data is used to test speed without IO dummy_data = False contexts = [mx.context.gpu(i) for i in range(1)] vocab = default_build_vocab(args.data_path+"/ptb.train.txt") def sym_gen(seq_len): return lstm_unroll(num_lstm_layer, seq_len, 10000, num_hidden=num_hidden, num_embed=num_embed, num_label=10000) init_c = [('l%d_init_c'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h data_train = BucketSentenceIter(args.data_path+"/ptb.train.txt", vocab, buckets, batch_size, args.num_batch, init_states) if dummy_data: data_train = DummyIter(data_train)