Пример #1
0
    def test2_create(self):
        set_log_level(3)
        opt = MatrixMarketOptions().get_default_option()
        opt.input.main = self.mm_path
        opt.input.uid = self.uid_path
        opt.input.iid = self.iid_path
        mm = MatrixMarket(opt)
        mm.create()
        self.temp_files.append(opt.data.path)
        self.assertTrue(True)
        db = mm.handle
        self.assertEqual(sorted(db.keys()),
                         sorted(['vali', 'idmap', 'rowwise', 'colwise']))
        header = mm.get_header()
        self.assertEqual(header['num_nnz'], 5)
        self.assertEqual(header['num_users'], 5)
        self.assertEqual(header['num_items'], 3)

        data = [(u, kk, vv) for u, kk, vv in mm.iterate()]
        self.assertEqual(len(data), 5)
        self.assertEqual([int(kk) for _, kk, _ in data], [0, 0, 2, 1, 1])
        self.assertEqual(data[2], (2, 2, 1.0))

        data = [(u, kk, vv) for u, kk, vv in mm.iterate(axis='colwise')]
        self.assertEqual([int(kk) for _, kk, _ in data], [0, 1, 3, 4, 2])
Пример #2
0
    def test01_most_similar(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        pals = ParALS(als)
        random_keys = [
            k for k, _ in als.most_similar('49.Star_Wars_(1977)', topk=128)
        ]
        random_indexes = als.get_index_pool(random_keys)
        naive = [als.most_similar(k, topk=10) for k in random_keys]
        topks0 = [[k for k, _ in result] for result in naive]
        scores0 = np.array([[v for _, v in result] for result in naive])
        self.assertEqual(scores0.shape, (
            128,
            10,
        ), msg='check even size')
        scores0 = scores0.reshape(len(naive), 10)
        pals.num_workers = 1
        topks1, scores1 = pals.most_similar(random_keys, topk=10, repr=True)
        topks2, scores2 = pals.most_similar(random_indexes, topk=10, repr=True)

        for a, b in combinations([topks0, topks1, topks2], 2):
            self.assertEqual(a, b)
        for a, b in combinations([scores0, scores1, scores2], 2):
            self.assertTrue(np.allclose(a, b))
Пример #3
0
    def test10_fast_most_similar(self):
        set_log_level(1)

        opt = CFROption().get_default_option()
        data_opt = StreamOptions().get_default_option()
        data_opt.data.sppmi = {"windows": 5, "k": 10}
        data_opt.data.internal_data_type = "matrix"
        data_opt.input.main = self.ml_100k + 'stream'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = CFR(opt, data_opt=data_opt)
        c.initialize()
        c.train()

        keys = [x for x, _ in c.most_similar('49.Star_Wars_(1977)', 10)]
        start_t = time.time()
        for i in range(100):
            for key in keys:
                c.most_similar(key)
        elapsed_a = time.time() - start_t

        c.normalize(group='item')
        start_t = time.time()
        for i in range(100):
            for key in keys:
                c.most_similar(key)
        elapsed_b = time.time() - start_t
        self.assertTrue(elapsed_a > elapsed_b)
Пример #4
0
    def test05_topk_MT(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()

        als.build_userid_map()
        all_keys = als._idmanager.userids
        start_t = time.time()
        naive = als.topk_recommendation(all_keys, topk=5)
        naive_elapsed = time.time() - start_t

        pals = ParALS(als)
        pals.num_workers = 4
        start_t = time.time()
        qkeys1, topks1, scores1 = pals.topk_recommendation(all_keys,
                                                           topk=5,
                                                           repr=True)
        par_elapsed = time.time() - start_t
        self.assertEqual(len(qkeys1), len(naive))
        for q, t in zip(qkeys1, topks1):
            self.assertEqual(naive[q], t)
        self.assertTrue(naive_elapsed > par_elapsed * 1.5)
Пример #5
0
    def test9_compact_serialization(self):
        set_log_level(1)

        opt = CFROption().get_default_option()
        data_opt = StreamOptions().get_default_option()
        data_opt.data.sppmi = {"windows": 5, "k": 10}
        data_opt.data.internal_data_type = "matrix"
        data_opt.input.main = self.ml_100k + 'stream'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = CFR(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        ret_a = [x for x, _ in c.most_similar('49.Star_Wars_(1977)')]
        self.assertIn('180.Return_of_the_Jedi_(1983)', ret_a)
        c.save('model.bin', with_userid_map=False)
        c = CFR(opt)
        c.load('model.bin', data_fields=['I', '_idmanager'])
        ret_a = [x for x, _ in c.most_similar('49.Star_Wars_(1977)')]
        self.assertIn('180.Return_of_the_Jedi_(1983)', ret_a)
        self.assertFalse(hasattr(c, 'U'))
        c.normalize(group='item')
        ret_a = [x for x, _ in c.most_similar('49.Star_Wars_(1977)')]
        self.assertIn('180.Return_of_the_Jedi_(1983)', ret_a)
Пример #6
0
    def _test10_fast_most_similar(self, cls, opt):
        set_log_level(1)

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()

        keys = [x for x, _ in c.most_similar('49.Star_Wars_(1977)', topk=100)]
        start_t = time.time()
        for i in range(100):
            for key in keys:
                c.most_similar(key)
        elapsed_a = time.time() - start_t

        c.normalize(group='item')
        start_t = time.time()
        for i in range(100):
            for key in keys:
                c.most_similar(key)
        elapsed_b = time.time() - start_t
        self.assertTrue(elapsed_a > elapsed_b)
Пример #7
0
    def _test6_topk(self, cls, opt):
        set_log_level(2)

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        self.assertTrue(len(c.topk_recommendation('1', 10)), 10)
        ret_a = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_a)
        c.normalize()
        ret_b = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_b)
        self.assertEqual(ret_a[:10], ret_b[:10])
Пример #8
0
    def _test9_compact_serialization(self, cls, opt):
        set_log_level(1)

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        ret_a = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_a)
        c.save('model.bin', with_userid_map=False)
        c = cls(opt)
        c.load('model.bin', data_fields=['Q', '_idmanager'])
        ret_a = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_a)
        self.assertFalse(hasattr(c, 'P'))
        c.normalize(group='item')
        ret_a = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_a)
Пример #9
0
    def _test8_serialization(self, cls, opt):
        set_log_level(1)

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        ret_a = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_a)
        c.save('model.bin')
        c.load('model.bin')
        os.remove('model.bin')
        ret_a = [
            x for x, _ in c.most_similar('180.Return_of_the_Jedi_(1983)',
                                         topk=100)
        ]
        self.assertIn('49.Star_Wars_(1977)', ret_a)
Пример #10
0
 def test02_most_similar(self):
     num_cpu = psutil.cpu_count()
     if num_cpu < 2:
         return
     set_log_level(1)
     als = ALS()
     mp = MockParallel(als)
     R = 1000000
     Q = self.get_factors(1000000, 12)
     indexes = np.random.choice(range(R), 1024).astype(np.int32)
     pool = np.array([], dtype=np.int32)
     elapsed = []
     results = []
     for num_workers in [1] + [i * 2
                               for i in range(1, num_cpu + 1)
                               if i * 2 < num_cpu][:3]:
         mp.num_workers = num_workers
         start_t = time.time()
         ret = mp._most_similar('item', indexes, Q, 10, pool, -1, True)
         elapsed.append(time.time() - start_t)
         results.append(ret)
     for i in range(1, len(elapsed)):
         self.assertTrue(elapsed[i - 1] > elapsed[i] * 1.2)
         self.assertTrue(np.allclose(results[i - 1][0], results[i][0], atol=1e-07))
         self.assertTrue(np.allclose(results[i - 1][1], results[i][1], atol=1e-07))
Пример #11
0
    def test01_most_similar(self):
        set_log_level(1)
        model = self.load_text8_model()
        index = HnswIndex(model.L0.shape[1])
        model.normalize('item')
        for f in model.L0:
            index.add_data(f)
        index.build(n_threads=4)
        index.save('n2.bin')

        par = ParW2V(model)

        model.opt.num_workers = 1
        all_keys = model._idmanager.itemids[::][:10000]
        start_t = time.time()
        [model.most_similar(k, topk=10) for k in all_keys]
        naive_elapsed = time.time() - start_t

        par.num_workers = 4
        start_t = time.time()
        par.most_similar(all_keys, topk=10, repr=True)
        par_elapsed = time.time() - start_t

        start_t = time.time()
        par.set_hnsw_index('n2.bin', 'item')
        par.most_similar(all_keys, topk=10, repr=True)
        ann_elapsed = time.time() - start_t
        self.assertTrue(naive_elapsed > par_elapsed * 1.5 > ann_elapsed * 5.0,
                        msg=f'{naive_elapsed} > {par_elapsed} > {ann_elapsed}')
        index.unload()
        os.remove('n2.bin')
Пример #12
0
 def test1_early_stopping(self):
     set_log_level(2)
     algo = MockAlgo()
     algo.initialize()
     algo.set_losses([1.0 + i / 1.0 for i in range(100)])
     algo.opt.early_stopping_rounds = 5
     algo.train()
     self.assertEqual(algo.last_iteration, 5)
Пример #13
0
 def test03_pool(self):
     set_log_level(1)
     als = ALS()
     mp = MockParallel(als)
     Q = self.get_factors(128, 5)
     indexes = np.array([0, 1, 2, 3, 4], dtype=np.int32)
     pool = np.array([5, 6, 7], dtype=np.int32)
     topks, scores = mp._most_similar(indexes, Q, 10, pool)
     self.assertTrue(set(topks[::].reshape(10 * 5)), set([5, 6, 7, -1]))
Пример #14
0
 def test01_most_similar(self):
     set_log_level(1)
     als = ALS()
     mp = MockParallel(als)
     Q = self.get_factors(128, 5)
     indexes = np.array([0, 1, 2, 3, 4], dtype=np.int32)
     pool = np.array([], dtype=np.int32)
     topks1, scores1 = mp._most_similar(indexes, Q, 10, pool)
     topks2, scores2 = self.get_most_similar(indexes, Q, 10)
     self.assertTrue(np.allclose(topks1, topks2))
     self.assertTrue(np.allclose(scores1, scores2))
Пример #15
0
    def _test4_train(self, cls, opt):
        set_log_level(3)
        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        self.assertTrue(True)
Пример #16
0
 def test04_topk(self):
     set_log_level(1)
     als = ALS()
     mp = MockParallel(als)
     P = self.get_factors(512, 5)
     Q = self.get_factors(128, 5)
     q_indexes = np.array([312, 313, 314, 315, 316], dtype=np.int32)
     pool = np.array([], dtype=np.int32)
     topks1, scores1 = mp._topk_recommendation(q_indexes, P, Q, 10, pool)
     topks2, scores2 = self.get_topk(q_indexes, P, Q, 10)
     self.assertTrue(np.allclose(topks1, topks2))
     self.assertTrue(np.allclose(scores1, scores2))
Пример #17
0
    def _test3_init(self, cls, opt):
        set_log_level(3)
        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.path = './ml100k.h5py'

        c = cls(opt, data_opt=data_opt)
        self.assertTrue(True)
        c.init_factors()
        self.assertEqual(c.P.shape, (943, 20))
        self.assertEqual(c.Q.shape, (1682, 20))
Пример #18
0
    def _test7_train_ml_20m(self, cls, opt):
        set_log_level(3)

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_20m + 'main'
        data_opt.input.uid = self.ml_20m + 'uid'
        data_opt.input.iid = self.ml_20m + 'iid'
        data_opt.data.path = './ml20m.h5py'
        data_opt.data.use_cache = True

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        self.assertTrue(True)
Пример #19
0
    def test2_most_similar(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'

        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        q1, q2, q3 = '49.Star_Wars_(1977)', '180.Return_of_the_Jedi_(1983)', '171.Empire_Strikes_Back,_The_(1980)'
        self._test_most_similar(als, q1, q2, q3)
Пример #20
0
def example1():
    log.set_log_level(log.DEBUG)
    als_option = ALSOption().get_default_option()
    als_option.validation = aux.Option({'topk': 10})
    data_option = MatrixMarketOptions().get_default_option()
    data_option.input.main = '../tests/ext/ml-100k/main'
    data_option.input.iid = '../tests/ext/ml-100k/iid'

    als = ALS(als_option, data_opt=data_option)
    als.initialize()
    als.train()
    print('MovieLens 100k metrics for validations\n%s' % json.dumps(als.get_validation_results(), indent=2))

    print('Similar movies to Star_Wars_(1977)')
    for rank, (movie_name, score) in enumerate(als.most_similar('49.Star_Wars_(1977)')):
        print(f'{rank + 1:02d}. {score:.3f} {movie_name}')

    print('Run hyper parameter optimization for val_ndcg...')
    als.opt.num_workers = 4
    als.opt.evaluation_period = 10
    als.opt.optimize = aux.Option({
        'loss': 'val_ndcg',
        'max_trials': 100,
        'deployment': True,
        'start_with_default_parameters': True,
        'space': {
            'd': ['randint', ['d', 10, 128]],
            'reg_u': ['uniform', ['reg_u', 0.1, 1.0]],
            'reg_i': ['uniform', ['reg_i', 0.1, 1.0]],
            'alpha': ['randint', ['alpha', 1, 10]],
        }
    })
    log.set_log_level(log.INFO)
    als.opt.model_path = './example1.ml100k.als.optimize.bin'
    print(json.dumps({'alpha': als.opt.alpha, 'd': als.opt.d,
                      'reg_u': als.opt.reg_u, 'reg_i': als.opt.reg_i}, indent=2))
    als.optimize()
    als.load('./example1.ml100k.als.optimize.bin')

    print('Similar movies to Star_Wars_(1977)')
    for rank, (movie_name, score) in enumerate(als.most_similar('49.Star_Wars_(1977)')):
        print(f'{rank + 1:02d}. {score:.3f} {movie_name}')

    optimization_res = als.get_optimization_data()
    best_parameters = optimization_res['best_parameters']

    print(json.dumps(optimization_res['best'], indent=2))
    print(json.dumps({'alpha': int(best_parameters['alpha']), 'd': int(best_parameters['d']),
                      'reg_u': best_parameters['reg_u'], 'reg_i': best_parameters['reg_i']}, indent=2))
Пример #21
0
    def test4_train(self):
        set_log_level(3)
        opt = CFROption().get_default_option()
        data_opt = StreamOptions().get_default_option()
        data_opt.data.sppmi = {"windows": 5, "k": 10}
        data_opt.data.internal_data_type = "matrix"
        data_opt.input.main = self.ml_100k + 'stream'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = CFR(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        self.assertTrue(True)
Пример #22
0
    def _test5_validation(self, cls, opt, ndcg=0.06, map=0.04):
        set_log_level(2)

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = cls(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        results = c.get_validation_results()
        self.assertTrue(results['ndcg'] > ndcg, msg='NDCG Test')
        self.assertTrue(results['map'] > map, msg='MAP Test')
Пример #23
0
def example2():
    log.set_log_level(log.INFO)
    als_option = ALSOption().get_default_option()
    data_option = MatrixMarketOptions().get_default_option()
    data_option.input.main = '../tests/ext/ml-20m/main'
    data_option.input.iid = '../tests/ext/ml-20m/iid'
    data_option.data.path = './ml20m.h5py'
    data_option.data.use_cache = True

    als = ALS(als_option, data_opt=data_option)
    als.initialize()
    als.train()
    als.normalize('item')
    als.build_itemid_map()

    print(
        'Make item recommendation on als.ml20m.par.top10.tsv with Paralell(Thread=4)'
    )
    par = ParALS(als)
    par.num_workers = 4
    all_items = als._idmanager.itemids
    start_t = time.time()
    with open('als.ml20m.par.top10.tsv', 'w') as fout:
        for idx in range(0, len(all_items), 128):
            topks, _ = par.most_similar(all_items[idx:idx + 128], repr=True)
            for q, p in zip(all_items[idx:idx + 128], topks):
                fout.write('%s\t%s\n' % (q, '\t'.join(p)))
    print('took: %.3f secs' % (time.time() - start_t))

    from n2 import HnswIndex
    index = HnswIndex(als.Q.shape[1])
    for f in als.Q:
        index.add_data(f)
    index.build(n_threads=4)
    index.save('ml20m.n2.index')
    index.unload()
    print(
        'Make item recommendation on als.ml20m.par.top10.tsv with Ann(Thread=1)'
    )
    par.set_hnsw_index('ml20m.n2.index', 'item')
    par.num_workers = 4
    start_t = time.time()
    with open('als.ml20m.ann.top10.tsv', 'w') as fout:
        for idx in range(0, len(all_items), 128):
            topks, _ = par.most_similar(all_items[idx:idx + 128], repr=True)
            for q, p in zip(all_items[idx:idx + 128], topks):
                fout.write('%s\t%s\n' % (q, '\t'.join(p)))
    print('took: %.3f secs' % (time.time() - start_t))
Пример #24
0
    def test3_init(self):
        set_log_level(3)
        opt = CFROption().get_default_option()
        opt.d = 20
        data_opt = StreamOptions().get_default_option()
        data_opt.data.sppmi = {"windows": 5, "k": 10}
        data_opt.data.internal_data_type = "matrix"
        data_opt.input.main = self.ml_100k + 'stream'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.path = './ml100k.h5py'

        c = CFR(opt, data_opt=data_opt)
        self.assertTrue(True)
        c.initialize()
        self.assertEqual(c.U.shape, (943, 20))
        self.assertEqual(c.I.shape, (1682, 20))
Пример #25
0
    def test04_text8_most_similar(self):
        set_log_level(1)
        model = self.load_text8_model()
        par = ParW2V(model)

        model.opt.num_workers = 1
        all_keys = model._idmanager.itemids[::][:10000]
        start_t = time.time()
        [model.most_similar(k, topk=10) for k in all_keys]
        naive_elapsed = time.time() - start_t

        par.num_workers = 4
        start_t = time.time()
        par.most_similar(all_keys, topk=10, repr=True)
        par_elapsed = time.time() - start_t

        self.assertTrue(naive_elapsed > par_elapsed * 3.0)
Пример #26
0
    def test07_topk_pool(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = BPRMFOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        model = BPRMF(opt, data_opt=data_opt)
        model.initialize()
        model.train()
        par = ParBPRMF(model)

        pool = np.array([i for i in range(5)], dtype=np.int32)
        model.build_userid_map()
        all_keys = model._idmanager.userids[::][:10]
        naive = model.topk_recommendation(all_keys, topk=10, pool=pool)
        qkeys1, topks1, scores1 = par.topk_recommendation(all_keys, topk=10, pool=pool, repr=True)
        for q, t in zip(qkeys1, topks1):
            self.assertEqual(naive[q], t)
Пример #27
0
    def test4_optimize(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()
        opt.d = 5
        opt.num_workers = 2
        opt.model_path = 'als.bin'
        opt.validation = aux.Option({'topk': 10})
        optimize_option = aux.Option({
            'loss': 'val_rmse',
            'max_trials': 10,
            'deployment': True,
            'start_with_default_parameters': True,
            'space': {
                'd': ['randint', ['d', 10, 20]],
                'reg_u': ['uniform', ['reg_u', 0.1, 0.3]],
                'reg_i': ['uniform', ['reg_i', 0.1, 0.3]],
                'alpha': ['randint', ['alpha', 8, 10]]
            }
        })
        opt.optimize = optimize_option
        opt.evaluation_period = 1
        opt.tensorboard = aux.Option({'root': './tb',
                                      'name': 'als'})

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        als = ALS(opt, data_opt=data_opt)
        als.init_factors()
        als.train()
        default_result = als.get_validation_results()
        als.optimize()
        base_loss = default_result['rmse']  # val_rmse
        optimize_loss = als.get_optimization_data()['best']['val_rmse']
        self.assertTrue(base_loss > optimize_loss)

        als.load('als.bin')
        loss = als.get_validation_results()
        self.assertAlmostEqual(loss['rmse'], optimize_loss)
        os.remove('als.bin')
Пример #28
0
    def test00_tensorboard(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()
        opt.d = 5
        opt.validation = aux.Option({'topk': 10})
        opt.tensorboard = aux.Option({'root': './tb', 'name': 'als'})

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        results = als.get_validation_results()
        self.assertTrue(results['ndcg'] > 0.025)
        self.assertTrue(results['map'] > 0.015)
Пример #29
0
    def test5_validation(self, ndcg=0.06, map=0.04):
        set_log_level(3)
        opt = CFROption().get_default_option()
        opt.validation = aux.Option({'topk': 10})
        opt.tensorboard = aux.Option({'root': './tb', 'name': 'cfr'})
        data_opt = StreamOptions().get_default_option()
        data_opt.data.validation.name = "sample"
        data_opt.data.sppmi = {"windows": 5, "k": 10}
        data_opt.data.internal_data_type = "matrix"
        data_opt.input.main = self.ml_100k + 'stream'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        c = CFR(opt, data_opt=data_opt)
        c.initialize()
        c.train()
        results = c.get_validation_results()
        self.assertTrue(results['ndcg'] > ndcg)
        self.assertTrue(results['map'] > map)
Пример #30
0
 def test02_most_similar(self):
     set_log_level(1)
     als = ALS()
     mp = MockParallel(als)
     R = 1000000
     Q = self.get_factors(1000000, 12)
     indexes = np.random.choice(range(R), 1024).astype(np.int32)
     pool = np.array([], dtype=np.int32)
     elapsed = []
     results = []
     for num_workers in [1, 2, 4, 8]:
         mp.num_workers = num_workers
         start_t = time.time()
         ret = mp._most_similar(indexes, Q, 10, pool)
         elapsed.append(time.time() - start_t)
         results.append(ret)
     for i in range(1, len(elapsed)):
         self.assertTrue(elapsed[i - 1] > elapsed[i] * 1.5)
         self.assertTrue(np.allclose(results[i - 1][0], results[i][0]))
         self.assertTrue(np.allclose(results[i - 1][1], results[i][1]))