Пример #1
0
    def generateReligions(self, locality):
        Catholic = rel.Catholicism()
        Protestant = rel.Protestantism()

        localCatholic = bu.Business([], "Catholic", locality, 10000000)
        localProtestant = bu.Business([], "Protestant", locality, 100000000)

        Catholic.addBusiness(localCatholic)
        Protestant.addBusiness(localProtestant)

        religionList = [Catholic, Protestant]
        return religionList
def importBusinesses(businessDict):
    businessDataset = open(
        "/globalscratch/plingras/matt/original/yelp_academic_dataset_business.json",
        "r")

    for line in businessDataset:
        currBusiness = business.Business(line)
        businessDict[currBusiness.data["business_id"]] = currBusiness
    return businessDict
    def test_kmeansBase(self):
        data = [
            business.Business(10, [0, 0, 0]),
            business.Business(20, [1, 1, 1]),
            business.Business(30, [2, 2, 2]),

            business.Business(411, [10, 10, 10]),
            business.Business(511, [11, 11, 11]),
            business.Business(611, [12, 12, 12]),

            business.Business(7123, [110, 110, 110]),
            business.Business(8123, [111, 111, 111]),
            business.Business(9123, [112, 112, 112])
        ]

        expected = [
            [0, 1, 2],
            [3, 4, 5],
            [6, 7, 8]
        ]

        manhattan = lambda a, b: distance.manhattan([a], [b])
        kMeans = clustering.KMeans(3, featureDistanceMap.FeatureDistanceMap([manhattan, manhattan, manhattan]))
        self.assertEqual(sorted(kMeans.cluster(data)), sorted(expected))
Пример #4
0
    def newBusiness(self, boss, busiName=None, capital=1000000):

        newBus = None

        if busiName is None:
            busiName = boss.lastname + " " + random.choice(d.busiNameList)

        if boss.capital >= capital:
            boss.capital -= capital
            newBus = bu.Business([boss], busiName, boss.locality, capital)
            boss.businesses.append(newBus)

            startupHQ = boss.getHome()

            OwnerJob = jobs.Owner(newBus, startupHQ)

            self.model.hirer.jobApplication(boss, OwnerJob)

            if boss != self.model.char:
                i_build = self.model.startupAI.whatToBuild(boss)
                self.model.builder.buildChain(boss.businesses[0], i_build)

        return newBus
Пример #5
0
def extractFeatures(rawBusiness, attributeMap, categoryMap, topWordMap, keyWordMap, openHoursMap):
    featureVector = []
    numericColumns = [
        COLUMN_STARS,
        COLUMN_TOTAL_REVIEW_COUNT,
        COLUMN_AVAILABLE_REVIEW_COUNT,
        COLUMN_MEAN_REVIEW_LEN,
        COLUMN_MEAN_WORD_LEN,
        COLUMN_NUM_WORDS,
        COLUMN_MEAN_WORD_COUNT,
        COLUMN_TOTAL_HOURS
    ]

    for column in numericColumns:
        featureVector.append(rawBusiness[column])

    attributes = [attributeMap[ele] for ele in splitWithEmpty(rawBusiness[COLUMN_ATTRIBUTES])]
    featureVector.append(attributes)

    categories = [categoryMap[ele] for ele in splitWithEmpty(rawBusiness[COLUMN_CATEGORIES])]
    featureVector.append(categories)

    topWords = [topWordMap[ele] for ele in splitWithEmpty(rawBusiness[COLUMN_TOP_WORDS])]
    featureVector.append(topWords)

    keyWords = [keyWordMap[ele] for ele in splitWithEmpty(rawBusiness[COLUMN_KEY_WORDS])]
    featureVector.append(keyWords)

    openHours = [openHoursMap[ele] for ele in splitWithEmpty(rawBusiness[COLUMN_OPEN_HOURS])]
    featureVector.append(openHours)

    otherInfo = {
        "yelpId": rawBusiness[COLUMN_YELP_ID],
        "name": rawBusiness[COLUMN_NAME]
    }

    return business.Business(rawBusiness[COLUMN_ID], featureVector, otherInfo)
Пример #6
0
import sys

#main

#world generator
worldGen = gen.generator()
BraveNewWorld = worldGen.generateWorld(30, 3, 3)
BraveNewWorld.printMap()
Jonestown = d.getLocality()[0]

#people, unit, business test
JohnDoe = d.peopleList[0]
JaneDoe = d.peopleList[1]
SusanSmith = d.peopleList[2]

MillersMill = b.Business("Miller's Mill", 30)

TheMill = u.Mill("The old mill", Jonestown, (1, 1), MillersMill)
MillersWarehouse = u.Warehouse("Miller's Warehouse", Jonestown, (7, 3),
                               MillersMill)
Bakery = u.Market("Ye Olde Bakery", Jonestown, (7, 1), MillersMill)
Deli = u.Market("Ye Delicious Deli", Jonestown, (1, 3), MillersMill)

MillingJob = j.Miller(10, MillersMill, TheMill)
Transporter = j.Carrier(1, MillersMill, MillersWarehouse)
ManagerJob = j.Manager(1, MillersMill, MillersWarehouse)

BraveNewWorld.printMap()
Jonestown.printMap()

#jobs test
Пример #7
0
#world generator
worldGen = gen.generator()
BraveNewWorld = worldGen.generateWorld(30000, 10, 10)
Jonestown = d.getLocality()[0]
Jonestown.week.machine.set_state('Friday')

#people, unit, business test
JohnDoe = d.peopleList[0]
JaneDoe = d.peopleList[1]
JimSmith = d.peopleList[2]
SusanSmith = d.peopleList[3]
JoeJohnson = d.peopleList[4]
SallyJohnson = d.peopleList[5]

MillersMill = b.Business("Miller's Mill", Jonestown, 1000000)

TheMill = u.Mill("The old mill", Jonestown, (1,1), MillersMill)
MillersWarehouse = u.Warehouse("Miller's Warehouse", Jonestown, (7,3), MillersMill)
Bakery = u.Bakery("Ye Olde Bakery", Jonestown, (7,1), MillersMill)
WheatFarm = u.Farm("Johnson's Wheat Farm", Jonestown, (5,1), MillersMill)

BraveNewWorld.printMap()
Jonestown.printMap()

#jobs test
MillingJob = j.Miller(9000, MillersMill, TheMill, 400)
Transporter = j.Carrier(1, MillersMill, MillersWarehouse, 400)
ManagerJob = j.Manager(MillersMill, Bakery, 400)
BakerJob = j.Baker(9000, MillersMill, Bakery, 400)
FarmerJob = j.Farmer(9000,MillersMill, WheatFarm, 400)
Пример #8
0
import business

my_store = business.Business("Vinyl Store")
my_store.build_customers("customers.txt")
my_store.build_inventory("albums.txt")
my_store.process_commands("commands.txt")
        big = max(i, j)

        self._distances[self._calcIndex(small, big)] = val

    def get(self, i, j):
        if (i == j):
            return 0

        small = min(i, j)
        big = max(i, j)

        return self._distances[self._calcIndex(small, big)]

if __name__ == '__main__':
    data = [
        business.Business(1, [0, 0, 0]),
        business.Business(2, [1, 1, 1]),
        business.Business(3, [2, 2, 2]),

        business.Business(4, [10, 10, 10]),
        business.Business(5, [11, 11, 11]),
        business.Business(6, [12, 12, 12]),

        business.Business(7, [110, 110, 110]),
        business.Business(8, [111, 111, 111]),
        business.Business(9, [112, 112, 112])
    ]

    manhattan = lambda a, b: distance.manhattan([a], [b])
    kMeans = KMeans(3, featureDistanceMap.FeatureDistanceMap([manhattan, manhattan, manhattan]))
    clusters = kMeans.cluster(data)