Пример #1
0
        rgb_features = []
        for i, clip in enumerate(video_clips):
            clip = np.array(clip)
            if len(clip) < params.frame_count:
                continue
            clip = preprocess_input(clip)
            rgb_feature = feature_extractor.predict(clip)[0]
            rgb_features.append(rgb_feature)
    
        rgb_features = np.array(rgb_features)
    
        rgb_feature_bag = interpolate(rgb_features, params.features_per_bag)
        x_train.append(rgb_feature_bag)
    return np.array(x_train),y_train

feature_extractor = c3d_feature_extractor()

x_train,y_train=generatedata('./training/*.mp4',feature_extractor)

from keras import backend as K
def recall_m(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
        recall = true_positives / (possible_positives + K.epsilon())
        return recall

def precision_m(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + K.epsilon())
        return precision
def run_demo():
    sample_video_path = './testing/*.mp4'
    # read video
    score_TT = 0
    score_TF = 0
    score_FF = 0
    score_FT = 0
    step = 0
    real_n = 0
    real_a = 0
    feature_extractor = c3d_feature_extractor()
    model = build_classifier_model()

    for video_file in glob.glob(sample_video_path):
        step += 1
        print("\nStep : ", step)
        video_name = os.path.basename(video_file).split('.')[0]
        print("Video_name : ", video_name)
        if video_name[0:6] == "Normal":
            real_n += 1
        else:
            real_a += 1
        video_clips, num_frames = get_video_clips(video_file)

        print("Number of clips in the video : ", len(video_clips))

        rgb_features = []
        print("\tprocessing clip ...")
        for i, clip in enumerate(video_clips):
            clip = np.array(clip)
            if len(clip) < params.frame_count:
                continue

            clip = preprocess_input(clip)
            rgb_feature = feature_extractor.predict(clip)[0]
            rgb_features.append(rgb_feature)

        rgb_features = np.array(rgb_features)

        # bag features
        rgb_feature_bag = interpolate(rgb_features, params.features_per_bag)

        # classify using the trained classifier model
        leng, widt = rgb_feature_bag.shape
        predictions = model.predict(rgb_feature_bag.reshape(1, leng, widt))
        predictions = np.array(predictions).squeeze()
        if predictions > 0.5:
            print("*** anomaly video ***")
            if video_name[0:6] == "Normal":
                score_TF += 1
            else:
                score_FF += 1
        else:
            if video_name[0:6] == "Normal":
                score_TT += 1
            else:
                score_FT += 1
            print(' ** Normal video ** ')
    print("Number of Video files = ", step)
    print("Number of Actual-Normal-Videos = ", real_n,
          "Number of Predicted Normal Videos = ", score_TT + score_FT)
    print("Number of Actual-Anomaly Videos = ", real_a,
          "Number of Predicted Anomaly Videos = ", score_TF + score_FF)
    print(" ** Accuaracy of Prediction ** ")
    if real_n != 0:
        print(" TT = ", round(score_TT / real_n, 2), "TF = ",
              round(score_TF / real_n, 2))
    if real_a != 0:
        print(" FT = ", round(score_FT / real_a, 2), "FF = ",
              round(score_FF / real_a, 2))