Пример #1
0
    def __init__(self, name = "Cleanup Memory", \
                 in_vec_list = None, out_vec_list = None, tau_in = 0.005, in_scale = 1.0, \
                 en_inhib = False, tau_inhib = 0.005, tau_smooth = 0.0001, inhib_scale = 2.0, \
                 en_mut_inhib = False, mut_inhib_scale = 2.0, \
                 num_neurons_per_vec = 10, threshold = 0.3, \
                 N_out_vec = None, en_X_out = False, input_name = "Input", \
                 sim_mode = SimulationMode.DEFAULT, quick = True, rand_seed = None, **params):
        
        NetworkImpl.__init__(self)
        self.setName(name)

        if( mut_inhib_scale <= 0 ):
            en_mut_inhib = False

        if( out_vec_list is None ):
            out_vec_list = in_vec_list
        self.dimension = len(out_vec_list[0])

        if( isinstance(mut_inhib_scale, (int,float)) ):
            mut_inhib_scale = [mut_inhib_scale] * len(in_vec_list)
        if( isinstance(inhib_scale, (int,float)) ):
            inhib_scale = [inhib_scale] * len(in_vec_list)
        if( isinstance(threshold, (int,float)) ):
            threshold = [threshold] * len(in_vec_list)
        in_vec_list = [[in_vec_list[i][d] * in_scale for d in range(len(in_vec_list[i]))] \
                      for i in range(len(in_vec_list))]
        
        self.i_list = []
        self.in_vec_list = []

        if( str(sim_mode).lower() == 'ideal' ):
            node = CleanupMemoryNode(name, in_vec_list, out_vec_list, tau_in, en_inhib, tau_inhib, \
                                     threshold = sum(threshold) / len(threshold), en_wta = en_mut_inhib, \
                                     N_out_vec = N_out_vec)
            self.addNode(node)
            self.exposeTermination(node.getTermination("Input"), "Input")
            if( en_inhib ):
                self.exposeTermination(node.getTermination("Inhib"), "Inhib")
            self.exposeOrigin(node.getOrigin("Output"), "X")
            if( en_X_out ):
                self.exposeOrigin(node.getOrigin("X"), "x0")
        else:
            net = nef.Network(self, quick)

            enss = []
            
            num_items = 0
            for out_vec in out_vec_list:
                if( out_vec is None ):
                    continue
                else:
                    num_items += 1

            in_terms = []
            inhib_terms = []
            origins = []

            en_N_out = not (N_out_vec is None)

            out_relay = SimpleNEFEns("Output", self.dimension, pstc = tau_smooth)
            net.add(out_relay)

            if( en_X_out ):
                x_relay = SimpleNEFEns("X", num_items + en_N_out, pstc = tau_smooth)
                net.add(x_relay)

            for i,in_vec in enumerate(in_vec_list):
                if( out_vec_list[i] is None ):
                    continue

                self.in_vec_list.append(in_vec)
                self.i_list.append(i)
                
                pdf = IndicatorPDF(threshold[i] + 0.1, 1)
                eval_points = [[pdf.sample()[0]] for _ in range(1000)]
                intercepts = [threshold[i] + n * (1-threshold[i])/(num_neurons_per_vec) for n in range(num_neurons_per_vec)]
                if( sim_mode == SimulationMode.DIRECT ):
                    ens = SimpleNEFEns("Item" + str(i), 1, input_name = "")
                    net.add(ens)
                else:
                    ens = net.make("Item" + str(i), num_neurons_per_vec, 1, eval_points = eval_points, \
                                   encoders = [[1]] * num_neurons_per_vec, intercept = intercepts, \
                                   max_rate = (100,200), seed = rand_seed)
                
                if( input_name != "" and not input_name is None ):
                    ens.addDecodedTermination(input_name, [in_vec], tau_in, False)
                    in_terms.append(ens.getTermination(input_name))
                ens.addDecodedOrigin("Output", [FilteredStepFunction(shift = threshold[i], \
                                     step_val = out_vec_list[i][d]) for d in range(self.dimension)], \
                                     "AXON")
                enss.append(ens)
                
                out_relay.addDecodedTermination("Item" + str(i), None, tau_smooth, False)
                out_relay.addNeuronCount(ens.getNeuronCount())
                net.connect(ens.getOrigin("Output"), out_relay.getTermination("Item" + str(i)))
                
                if( en_X_out ):
                    ens.removeDecodedOrigin("X")
                    ens.addDecodedOrigin("X", [FilteredStepFunction(shift = threshold[i])], "AXON")
                    x_relay.addDecodedTermination("Item" + str(i), transpose(delta(num_items + en_N_out, i)), tau_smooth, False)
                    x_relay.addNeuronCount(ens.getNeuronCount())
                    net.connect(ens.getOrigin("X"), x_relay.getTermination("Item" + str(i)))

                if( en_inhib ):
                    ens.addTermination("Inhib", [[-inhib_scale[i]]] * num_neurons_per_vec, tau_inhib, False)
                    inhib_terms.append(ens.getTermination("Inhib"))
            
            if( not N_out_vec is None ):
                N_threshold = min(threshold)
                pdf = IndicatorPDF(-0.1, N_threshold - 0.1)
                eval_points = [[pdf.sample()[0]] for _ in range(1000)]
                intercepts  = [-(n * (N_threshold)/(num_neurons_per_vec)) for n in range(num_neurons_per_vec)]
                if( sim_mode == SimulationMode.DIRECT ):
                    ens = SimpleNEFEns("ItemN", 1, input_name = "")
                    net.add(ens)
                else:
                    ens = net.make("ItemN", num_neurons_per_vec, 1, eval_points = eval_points, \
                                   encoders = [[-1]] * num_neurons_per_vec, intercept = intercepts, \
                                   max_rate = (300,400), seed = rand_seed)

                for i in range(len(in_vec_list)):
                    ens.addDecodedTermination("Item" + str(i), [[1]], 0.005, False)
                    net.connect(enss[i].getOrigin("X"), ens.getTermination("Item" + str(i)))

                ens.addDecodedOrigin("Output", [FilteredStepFunction(shift = N_threshold, \
                                     step_val = N_out_vec[d], mirror = True) for d in range(self.dimension)], \
                                     "AXON")
                
                out_relay.addDecodedTermination("ItemN", None, tau_smooth, False)
                out_relay.addNeuronCount(ens.getNeuronCount())
                net.connect(ens.getOrigin("Output"), out_relay.getTermination("ItemN"))
                
                if( en_X_out ):
                    ens.removeDecodedOrigin("X")
                    ens.addDecodedOrigin("X", [FilteredStepFunction(shift = N_threshold, mirror = True)], "AXON")
                    x_relay.addDecodedTermination("ItemN", transpose(delta(num_items + en_N_out, num_items)), tau_smooth, False)
                    x_relay.addNeuronCount(ens.getNeuronCount())
                    net.connect(ens.getOrigin("X"), x_relay.getTermination("ItemN"))

                if( en_inhib ):
                    ens.addTermination("Inhib", [[-inhib_scale[i]]] * num_neurons_per_vec, tau_inhib, False)
                    inhib_terms.append(ens.getTermination("Inhib"))
             

            if( en_mut_inhib ):
                for n in range(num_items):
                    for i in range(num_items):
                        if( n != i):
                            enss[i].addTermination("Inhib" + str(n), [[-mut_inhib_scale[i]]] * num_neurons_per_vec, 0.005, False)
                            net.connect(enss[n].getOrigin("X"), enss[i].getTermination("Inhib" + str(n)))
            
            if( len(in_terms) > 0 ):
                in_term = EnsembleTermination(net.network, "Input", in_terms)
                net.network.exposeTermination(in_term, "Input")
            net.network.exposeOrigin(out_relay.getOrigin("X"), "X")

            if( en_X_out ):
                self.exposeOrigin(x_relay.getOrigin("X"), "x0")

            if( en_inhib ):
                inhib_term = EnsembleTermination(net.network, "Inhib", inhib_terms)
                net.network.exposeTermination(inhib_term, "Inhib")
            
            # Reset random seed
            if( not seed is None ):
                seed()
            self.releaseMemory()

        if( str(sim_mode).lower() == 'ideal' ):
            sim_mode = SimulationMode.DIRECT
        NetworkImpl.setMode(self, sim_mode)
        if( sim_mode == SimulationMode.DIRECT ):
            self.fixMode()
Пример #2
0
    def __init__(self, name = "Detector", detect_vec = None, inhib_vec = None, tau_in = 0.005, \
                 en_inhib = False, en_inhibN = None, tau_inhib = 0.005, in_scale = 1.0, inhib_scale = 2.0,\
                 en_out = True, en_N_out = False, en_X_out = False, num_neurons = 20, detect_threshold = 0.4, \
                 sim_mode = SimulationMode.DEFAULT, quick = True, rand_seed = 0, net = None, input_name = "Input"):
   
        self.dimension = 1
        NetworkImpl.__init__(self)
        ens_name = name
        if( not isinstance(net, nef.Network) ):
            if( not net is None ):
                net = nef.Network(net, quick)
            else:
                ens_name = "detect"
                net = nef.Network(self, quick)
        self.setName(name)

        if( detect_vec is None ):
            detect_vec = [1]

        vec_dim = len(detect_vec)
        detect_vec_scale = [detect_vec[n] * in_scale for n in range(vec_dim)]
        if( en_inhib ):
            if( inhib_vec is None ):
                inhib_vec = [1]
            inhib_dim = len(inhib_vec)
        if( en_inhibN is None ):
            en_inhibN = en_inhib

        max_rate  = (100,200)
        max_rateN = (300,400)
        detect_threshold = max(min(detect_threshold, 0.8), 0.2)
        intercepts  = [detect_threshold + n * (1-detect_threshold)/(num_neurons) for n in range(num_neurons)]
        interceptsN = [-(n * (detect_threshold)/(num_neurons)) for n in range(num_neurons)]
        params  = dict(intercept = intercepts , max_rate = max_rate , quick = quick)
        paramsN = dict(intercept = interceptsN, max_rate = max_rateN, quick = quick)

        out_func  = FilteredStepFunction(shift = detect_threshold, mirror = False)
        out_funcN = FilteredStepFunction(shift = detect_threshold, mirror = True)
        
        if( rand_seed >= 0 ):
            PDFTools.setSeed(rand_seed)
            seed(rand_seed)

        params["encoders"]  = [[1]] * num_neurons
        paramsN["encoders"] = [[-1]] * num_neurons

        pdf  = IndicatorPDF(detect_threshold + 0.1, 1.1)
        pdfN = IndicatorPDF(-0.1, detect_threshold - 0.1)
        params["eval_points"]  = [[pdf.sample()[0]] for _ in range(1000)]
        paramsN["eval_points"] = [[pdfN.sample()[0]] for _ in range(1000)]
        
        if( en_out ):
            if( sim_mode == SimulationMode.DIRECT or str(sim_mode).lower() == 'ideal' ):
                detect = SimpleNEFEns(ens_name, 1, input_name = "")
                net.add(detect)
            else:
                detect = net.make(ens_name, num_neurons, 1, **params)
            if( not input_name is None ):
                detect.addDecodedTermination(input_name, [detect_vec_scale], tau_in, False)
            if( en_inhib ):
                inhib_vec_scale = [inhib_vec[n] * -inhib_scale for n in range(inhib_dim)]
                detect.addTermination("Inhib", [inhib_vec_scale] * num_neurons, tau_inhib, False)
            
            detect.removeDecodedOrigin("X")
            detect.addDecodedOrigin("X", [out_func], "AXON")

            if( en_X_out ):
                detect.addDecodedOrigin("x0", [PostfixFunction("x0", 1)], "AXON")
                self.exposeOrigin(detect.getOrigin("x0"), "x0")

        if( en_N_out ):
            if( sim_mode == SimulationMode.DIRECT or str(sim_mode).lower() == 'ideal' ):
                detectN = SimpleNEFEns(ens_name + "N", 1, input_name = "")
                net.add(detectN)
            else:
                detectN = net.make(ens_name + "N", num_neurons, 1, **paramsN)
            if( not input_name is None ):
                detectN.addDecodedTermination(input_name, [detect_vec_scale], tau_in, False)
            if( en_inhibN ):
                detectN.addTermination("Inhib", [inhib_vec_scale] * num_neurons, tau_inhib, False)
        
            detectN.removeDecodedOrigin("X")
            detectN.addDecodedOrigin("X", [out_funcN], "AXON")

            if( en_X_out ):
                detectN.addDecodedOrigin("x0", [PostfixFunction("x0", 1)], "AXON")
                self.exposeOrigin(detectN.getOrigin("x0"), "x0N")
                
        input_terms = []
        inhib_terms = []
        
        if( en_out ):
            if( not input_name is None ):
                input_terms.append(detect.getTermination(input_name))
            self.exposeOrigin(detect.getOrigin("X"), name)
            if( en_inhib ):
                inhib_terms.append(detect.getTermination("Inhib"))                
        if( en_N_out ):
            if( not input_name is None ):
                input_terms.append(detectN.getTermination(input_name))
            self.exposeOrigin(detectN.getOrigin("X"), str(name + "N"))
            if( en_inhibN ):
                inhib_terms.append(detectN.getTermination("Inhib"))

        if( len(input_terms) > 0 ):
            input_term = EnsembleTermination(self, input_name, input_terms)
            self.exposeTermination(input_term, input_name)
        if( len(inhib_terms) > 0 ):
            inhib_term = EnsembleTermination(self, "Inhib", inhib_terms)
            self.exposeTermination(inhib_term, "Inhib")

        if( str(sim_mode).lower() == 'ideal' ):
            sim_mode = SimulationMode.DIRECT
        NetworkImpl.setMode(self, sim_mode)
        if( sim_mode == SimulationMode.DIRECT ):
            self.fixMode()

        self.releaseMemory()