Пример #1
0
def test_scan(mock_draw):
    folder_path = "tmp"
    figure_path = pathlib.Path(folder_path) / "scan_a_0.pdf"

    par_name = "a[0]"
    par_mle = 1.5
    par_unc = 0.2
    par_vals = np.asarray([1.3, 1.5, 1.7])
    par_nlls = np.asarray([0.9, 0.0, 1.1])
    scan_results = fit.ScanResults(par_name, par_mle, par_unc, par_vals,
                                   par_nlls)

    visualize.scan(scan_results, figure_folder=folder_path)

    assert mock_draw.call_count == 1
    assert mock_draw.call_args[0][0] == par_name
    assert mock_draw.call_args[0][1] == par_mle
    assert mock_draw.call_args[0][2] == par_unc
    assert np.allclose(mock_draw.call_args[0][3], par_vals)
    assert np.allclose(mock_draw.call_args[0][4], par_nlls)
    assert mock_draw.call_args[0][5] == figure_path
    assert mock_draw.call_args[1] == {}

    # unknown plotting method
    with pytest.raises(NotImplementedError, match="unknown backend: unknown"):
        visualize.scan(scan_results,
                       figure_folder=folder_path,
                       method="unknown")
Пример #2
0
def test_ScanResults():
    name = "par_a"
    bestfit = 1.2
    uncertainty = 0.3
    parameter_values = np.asarray([0.9, 1.2, 1.5])
    delta_nlls = np.asarray([1.0, 0.0, 1.0])
    scan_results = fit.ScanResults(name, bestfit, uncertainty,
                                   parameter_values, delta_nlls)
    assert scan_results.name == name
    assert scan_results.bestfit == bestfit
    assert scan_results.uncertainty == uncertainty
    assert np.allclose(scan_results.parameter_values, parameter_values)
    assert np.allclose(scan_results.delta_nlls, delta_nlls)
Пример #3
0
def test_scan(mock_util, mock_scan, mock_vis, tmp_path):
    workspace = {"workspace": "mock"}
    workspace_path = str(tmp_path / "workspace.json")

    # need to save workspace to file since click looks for it
    with open(workspace_path, "w") as f:
        f.write('{"workspace": "mock"}')

    par_name = "par"
    scan_results = fit.ScanResults(par_name, 1.0, 0.1, np.asarray([1.5]),
                                   np.asarray([3.5]))

    runner = CliRunner()

    # default
    result = runner.invoke(cli.scan, [workspace_path, par_name])
    assert result.exit_code == 0
    assert mock_util.call_args_list == [((workspace, ), {"asimov": False})]
    assert mock_scan.call_args_list == [(("model", "data", par_name), {
        "par_range": None,
        "n_steps": 11
    })]
    assert mock_vis.call_count == 1
    assert mock_vis.call_args[0][0].name == scan_results.name
    assert mock_vis.call_args[0][0].bestfit == scan_results.bestfit
    assert mock_vis.call_args[0][0].uncertainty == scan_results.uncertainty
    assert np.allclose(mock_vis.call_args[0][0].parameter_values,
                       scan_results.parameter_values)
    assert np.allclose(mock_vis.call_args[0][0].delta_nlls,
                       scan_results.delta_nlls)
    assert mock_vis.call_args[1] == {"figure_folder": "figures"}

    # only one bound
    with pytest.raises(
            ValueError,
            match=
            "Need to either specify both lower_bound and upper_bound, or neither.",
    ):
        runner.invoke(
            cli.scan,
            ["--lower_bound", 1.0, workspace_path, par_name],
            catch_exceptions=False,
        )
    with pytest.raises(
            ValueError,
            match=
            "Need to either specify both lower_bound and upper_bound, or neither.",
    ):
        runner.invoke(
            cli.scan,
            ["--upper_bound", 1.0, workspace_path, par_name],
            catch_exceptions=False,
        )

    # custom bounds, number of steps and Asimov
    result = runner.invoke(
        cli.scan,
        [
            "--lower_bound",
            0.0,
            "--upper_bound",
            2.0,
            "--n_steps",
            21,
            "--asimov",
            "--figfolder",
            "folder",
            workspace_path,
            par_name,
        ],
    )
    assert result.exit_code == 0
    assert mock_util.call_args_list[-1] == ((workspace, ), {"asimov": True})
    assert mock_scan.call_args_list[-1] == (
        ("model", "data", par_name),
        {
            "par_range": (0.0, 2.0),
            "n_steps": 21
        },
    )
    assert mock_vis.call_args[1] == {"figure_folder": "folder"}
Пример #4
0
    assert mock_rank.call_args_list[-1] == (
        ("model", "data"),
        {
            "fit_results": fit_results
        },
    )
    assert mock_vis.call_args_list[-1][1] == {
        "figure_folder": "folder",
        "max_pars": 3
    }


@mock.patch("cabinetry.visualize.scan", autospec=True)
@mock.patch(
    "cabinetry.fit.scan",
    return_value=fit.ScanResults("par", 1.0, 0.1, np.asarray([1.5]),
                                 np.asarray([3.5])),
    autospec=True,
)
@mock.patch(
    "cabinetry.model_utils.model_and_data",
    return_value=("model", "data"),
    autospec=True,
)
def test_scan(mock_util, mock_scan, mock_vis, tmp_path):
    workspace = {"workspace": "mock"}
    workspace_path = str(tmp_path / "workspace.json")

    # need to save workspace to file since click looks for it
    with open(workspace_path, "w") as f:
        f.write('{"workspace": "mock"}')