Пример #1
0
def main():
    args = parse_args()

    if args.dtype == 'float32':
        args.dtype = 'float'

    # report some available info
    if args.device == 'gpu':
        assert args.num_gpus > 0, "Number of GPUs must be specified in GPU mode"
        print("__caffe2.cuda_version__=%s" % (json.dumps(workspace.GetCUDAVersion())))
        print("__caffe2.cudnn_version__=%s" % (json.dumps(workspace.GetCuDNNVersion())))

    try:
        opts = vars(args)
        opts['phase'] = 'inference' if args.forward_only else 'training'
        model_title, times = benchmark(opts)
    except Exception as err:
        #TODO: this is not happenning, program terminates earlier.
        # For now, do not rely on __results.status__=...
        times = np.zeros(0)
        model_title = 'Unk'
        print ("Critical error while running benchmarks (%s). See stacktrace below." % (str(err)))
        traceback.print_exc(file=sys.stdout)

    if len(times) > 0:
        mean_time = np.mean(times) # seconds
        # Compute mean throughput
        num_local_devices = 1 if args.device == 'cpu' else args.num_gpus  #Number of compute devices per node
        num_devices = num_local_devices * args.num_workers                #Global number of devices
        replica_batch = args.batch_size                                   #Input is a replica batch
        mean_throughput = num_devices * replica_batch / mean_time         #images / sec
        #
        print("__results.time__=%s" % (json.dumps(1000.0 * mean_time)))
        print("__results.throughput__=%s" % (json.dumps(int(mean_throughput))))
        print("__exp.model_title__=%s" % (json.dumps(model_title)))
        print("__results.time_data__=%s" % (json.dumps((1000.0*times).tolist())))
    else:
        print("__results.status__=%s" % (json.dumps("failure")))
Пример #2
0
def get_nvidia_info():
    return (
        get_nvidia_smi_output(),
        workspace.GetCUDAVersion(),
        workspace.GetCuDNNVersion(),
    )
Пример #3
0
    parser.add_argument(
        '--enable_tensor_core',
        action='store_true',
        help=
        'Enable volta\'s tensor ops (requires CUDA >= 9, cuDNN >= 7 and NVIDIA Volta GPU)'
    )
    args = parser.parse_args()

    if args.dtype == 'float32':
        args.dtype = 'float'

    # report some available info
    if args.device == 'gpu':
        assert args.num_gpus > 0, "Number of GPUs must be specified in GPU mode"
        print("__caffe2.cuda_version__=%s" %
              (json.dumps(workspace.GetCUDAVersion())))
        print("__caffe2.cudnn_version__=%s" %
              (json.dumps(workspace.GetCuDNNVersion())))

    try:
        opts = vars(args)
        opts['phase'] = 'inference' if args.forward_only else 'training'
        model_title, times = benchmark(opts)
    except Exception as err:
        #TODO: this is not happenning, program terminates earlier.
        # For now, do not rely on __results.status__=...
        times = np.zeros(0)
        model_title = 'Unk'
        print(
            "Critical error while running benchmarks (%s). See stacktrace below."
            % (str(err)))
Пример #4
0
    parser.add_argument('--enable_tensor_core', action='store_true', help='Enable volta\'s tensor ops (requires CUDA >= 9, cuDNN >= 7 and NVIDIA Volta GPU)')
    parser.add_argument('--num_decode_threads', type=int, required=False, default=1, help='Number of image decode threads. For high throughput models such as AlexNetOWT set to 6-8 for 4 Voltas.')
    parser.add_argument('--float16_compute', nargs='?', const=True, default=False, type=str2bool, help='If true, use FP16 SGD optimizer else use multi-precision SGD optimizer')
    # These parameters affect the ModelHelper behaviour and are now applied for GPU benchmarks
    parser.add_argument('--cudnn_workspace_limit_mb', type=int, required=False, default=64, help='CuDNN workspace limit in MBs')
    parser.add_argument('--use_cudnn', nargs='?', const=True, default=True, type=str2bool, help='Use NVIDIA cuDNN library.')
    parser.add_argument('--cudnn_exhaustive_search', nargs='?', const=True, default=True, type=str2bool, help='Benchmark inference (if true) else benchmark training.')
    args = parser.parse_args()

    if args.dtype == 'float32':
        args.dtype = 'float'

    # report some available info
    if args.device == 'gpu':
        assert args.num_gpus > 0, "Number of GPUs must be specified in GPU mode"
        print("__caffe2.cuda_version__=%s" % (json.dumps(workspace.GetCUDAVersion())))
        print("__caffe2.cudnn_version__=%s" % (json.dumps(workspace.GetCuDNNVersion())))

    try:        
        opts = vars(args)
        opts['phase'] = 'inference' if args.forward_only else 'training'
        model_title, times = benchmark(opts)
    except Exception as err:
        #TODO: this is not happenning, program terminates earlier.
        # For now, do not rely on __results.status__=...
        times = np.zeros(0)
        model_title = 'Unk'
        print ("Critical error while running benchmarks (%s). See stacktrace below." % (str(err)))
        traceback.print_exc(file=sys.stdout)

    if len(times) > 0: