Пример #1
0
    def test_reduce_front_sum_empty_batch(self, num_reduce_dim, seed, gc, dc):
        np.random.seed(seed)
        X = np.random.rand(0, 4, 3, 5).astype(np.float32)

        def ref_sum(X):
            return [np.sum(X, axis=(tuple(range(num_reduce_dim))))]

        self.reduce_op_test("ReduceFrontSum", ref_sum, [X], ["input"],
                            num_reduce_dim, gc)
        self.grad_variant_input_test("ReduceFrontSumGradient", X, ref_sum,
                                     num_reduce_dim)

        # test the second iteration
        not_empty_X = np.random.rand(2, 4, 3, 5).astype(np.float32)
        net = core.Net('test')
        with core.DeviceScope(gc):
            net.ReduceFrontSum(['X'], ['output'],
                               num_reduce_dim=num_reduce_dim)
            workspace.CreateNet(net)

            workspace.FeedBlob('X', not_empty_X)
            workspace.RunNet(workspace.GetNetName(net))
            output = workspace.FetchBlob('output')
            np.testing.assert_allclose(output,
                                       ref_sum(not_empty_X)[0],
                                       atol=1e-3)

            workspace.FeedBlob('X', X)
            workspace.RunNet(workspace.GetNetName(net))
            output = workspace.FetchBlob('output')
            np.testing.assert_allclose(output, ref_sum(X)[0], atol=1e-3)
Пример #2
0
    net_def.ParseFromString(f.read())
    net_def.device_option.CopyFrom(device_opts)
    C.create_net(net_def.SerializeToString())

C.feed_blob('data', img, device_opts.SerializeToString())
### Debug code
"""
for b in workspace.Blobs():
    x = workspace.FetchBlob(b)
    if type(x) != str:
        print(str(b) + ': ' + str(x.shape))

"""
### End of debug code

print('Running net ' + workspace.GetNetName(net_def) + '...')

C.run_net(workspace.GetNetName(net_def), 1, False)

# Turn it into something we can play with and examine which is in a multi-dimensional array
results = workspace.FetchBlob('prob')
#print("results shape: ", results.shape)

# Quick way to get the top-1 prediction result
# Squeeze out the unnecessary axis. This returns a 1-D array of length 1000
preds = np.squeeze(results)
# Get the prediction and the confidence by finding the maximum value and index of maximum value in preds array
curr_pred, curr_conf = max(enumerate(preds), key=operator.itemgetter(1))
print("Prediction: ", curr_pred)
print("Confidence: ", curr_conf)
Пример #3
0
# Create GPU device option
device_opts = caffe2_pb2.DeviceOption()
if use_gpu == 0:
    device_opts.device_type = caffe2_pb2.CPU
    print('Running on CPU')
else:
    device_opts.device_type = caffe2_pb2.HIP
    device_opts.hip_gpu_id = 0
    print('Running on HIP')
    if use_gpu == 2:
        engine_list = ['MIOPEN', '']
        C.set_global_engine_pref({caffe2_pb2.HIP : engine_list})
        print('Using MIOPEN')

C.feed_blob('data', img, device_opts.SerializeToString())

init_def = caffe2_pb2.NetDef()
with open(INIT_NET, 'rb') as f:
    init_def.ParseFromString(f.read())
    init_def.device_option.CopyFrom(device_opts)
    C.run_net_once(init_def.SerializeToString())

net_def = caffe2_pb2.NetDef()
with open(PREDICT_NET, 'rb') as f:
    net_def.ParseFromString(f.read())
    net_def.device_option.CopyFrom(device_opts)
    C.create_net(net_def.SerializeToString())

C.feed_blob('data', img, device_opts.SerializeToString())
C.benchmark_net(workspace.GetNetName(net_def), 10, num_iter, per_layer_timing)