Пример #1
0
def setup_module(module):
    # Use this so we can download containers as needed
    ca.setRemoteConfig(alternate_share_ids=['69432e9201d0'])

    # Check if singularity is installed
    retval = os.system('singularity --version')
    assert retval == 0, 'Singularity is not installed'
Пример #2
0
def test_spikeforest_analysis(tmpdir):
    tmpdir = str(tmpdir)

    # generate toy recordings
    delete_recordings = True
    num_recordings = 2
    duration = 15
    for num in range(1, num_recordings+1):
        dirname = tmpdir+'/toy_example{}'.format(num)
        if delete_recordings:
            if os.path.exists(dirname):
                shutil.rmtree(dirname)
        if not os.path.exists(dirname):
            rx, sx_true = se.example_datasets.toy_example1(
                duration=duration, num_channels=4, samplerate=30000, K=10)
            se.MdaRecordingExtractor.writeRecording(
                recording=rx, save_path=dirname)
            se.MdaSortingExtractor.writeSorting(
                sorting=sx_true, save_path=dirname+'/firings_true.mda')

    # Use this to optionally connect to a kbucket share:
    # ca.autoConfig(collection='spikeforest',key='spikeforest2-readwrite',ask_password=True)
    # for downloading containers if needed
    ca.setRemoteConfig(alternate_share_ids=['69432e9201d0'])

    # Specify the compute resource (see the note above)
    # compute_resource = 'local-computer'
    compute_resource = None

    # Use this to control whether we force the processing to re-run (by default it uses cached results)
    os.environ['MLPROCESSORS_FORCE_RUN'] = 'FALSE'  # FALSE or TRUE

    # This is the id of the output -- for later retrieval by GUI's, etc
    output_id = 'spikeforest_test0'

    # Grab the recordings for testing
    recordings = [
        dict(
            recording_name='toy_example{}'.format(num),
            study_name='toy_examples',
            directory=tmpdir+'/toy_example{}'.format(num)
        )
        for num in range(1, num_recordings+1)
    ]

    studies = [
        dict(
            name='toy_examples',
            study_set='toy_examples',
            directory=os.path.abspath('.'),
            description='Toy examples.'
        )
    ]

    # Summarize the recordings
    recordings = sa.summarize_recordings(
        recordings=recordings, compute_resource=compute_resource)

    # Sorters (algs and params) are defined below
    sorters = _define_sorters()

    # We will be assembling the sorting results here
    sorting_results = []

    for sorter in sorters:
        # Sort the recordings
        sortings = sa.sort_recordings(
            sorter=sorter,
            recordings=recordings,
            compute_resource=compute_resource
        )

        # Summarize the sortings
        sortings = sa.summarize_sortings(
            sortings=sortings,
            compute_resource=compute_resource
        )

        # Compare with ground truth
        sortings = sa.compare_sortings_with_truth(
            sortings=sortings,
            compute_resource=compute_resource
        )

        # Append to results
        sorting_results = sorting_results+sortings

    # TODO: collect all the units for aggregated analysis

    aggregated_sorting_results = sa.aggregate_sorting_results(studies, recordings, sorting_results)

    # Save the output
    print('Saving the output')
    ca.saveObject(
        key=dict(
            name='spikeforest_results',
            output_id=output_id
        ),
        object=dict(
            studies=studies,
            recordings=recordings,
            sorting_results=sorting_results,
            aggregated_sorting_results=ca.saveObject(object=aggregated_sorting_results)
        )
    )

    for sr in aggregated_sorting_results['study_sorting_results']:
        study_name=sr['study']
        sorter_name=sr['sorter']
        n1=np.array(sr['num_matches'])
        n2=np.array(sr['num_false_positives'])
        n3=np.array(sr['num_false_negatives'])
        accuracies=n1/(n1+n2+n3)
        avg_accuracy=np.mean(accuracies)
        txt='STUDY: {}, SORTER: {}, AVG ACCURACY: {}'.format(study_name,sorter_name,avg_accuracy)
        print(txt)
        if avg_accuracy<0.3:
            if sorter_name == 'Yass':
                print('Average accuracy is too low, but we are excusing Yass for now.')
            else:
                raise Exception('Average accuracy is too low for test----- '+txt)
Пример #3
0
def main():
    # generate toy recordings
    if not os.path.exists('recordings'):
        os.mkdir('recordings')

    delete_recordings = False

    recpath = 'recordings/example1'
    if os.path.exists(recpath) and (delete_recordings):
        shutil.rmtree(recpath)
    if not os.path.exists(recpath):
        rx, sx_true = se.example_datasets.toy_example1(duration=60,
                                                       num_channels=4,
                                                       samplerate=30000,
                                                       K=10)
        se.MdaRecordingExtractor.writeRecording(recording=rx,
                                                save_path=recpath)
        se.MdaSortingExtractor.writeSorting(sorting=sx_true,
                                            save_path=recpath +
                                            '/firings_true.mda')

    # for downloading containers if needed
    ca.setRemoteConfig(alternate_share_ids=['69432e9201d0'])

    # Specify the compute resource
    compute_resource = None
    num_workers = 10

    # Use this to control whether we force the processing to re-run (by default it uses cached results)
    os.environ['MLPROCESSORS_FORCE_RUN'] = 'FALSE'  # FALSE or TRUE

    # This is the id of the output -- for later retrieval by GUI's, etc
    output_id = 'toy_example_local'

    # Grab the recordings for testing
    recordings = [
        dict(recording_name='example1',
             study_name='toy_examples',
             directory=os.path.abspath('recordings/example1'))
    ]

    recordings = recordings * 10

    studies = [
        dict(name='toy_examples',
             study_set='toy_examples',
             directory=os.path.abspath('recordings'),
             description='Toy examples.')
    ]

    # Sorters (algs and params) are defined below
    sorters = _define_sorters()

    # We will be assembling the sorting results here
    sorting_results = []

    for sorter in sorters:
        # Sort the recordings
        compute_resource0 = compute_resource
        if sorter['name'] == 'KiloSort':
            compute_resource0 = compute_resource_ks
        sortings = sa.sort_recordings(sorter=sorter,
                                      recordings=recordings,
                                      compute_resource=compute_resource0,
                                      num_workers=num_workers)

        # Append to results
        sorting_results = sorting_results + sortings

    # Summarize the sortings
    sorting_results = sa.summarize_sortings(sortings=sorting_results,
                                            compute_resource=compute_resource)

    # Compare with ground truth
    sorting_results = sa.compare_sortings_with_truth(
        sortings=sorting_results,
        compute_resource=compute_resource,
        num_workers=num_workers)

    # Save the output
    print('Saving the output')
    ca.saveObject(key=dict(name='spikeforest_results'),
                  subkey=output_id,
                  object=dict(studies=studies,
                              recordings=recordings,
                              sorting_results=sorting_results))
Пример #4
0
def kbucketConfigLocal(write=True):
    ca.setRemoteConfig(collection='',token='',share_id='',upload_token='')
Пример #5
0
def main():
    ca.autoConfig(collection='spikeforest',
                  key='spikeforest2-readwrite',
                  ask_password=True,
                  password=os.environ.get('SPIKEFOREST_PASSWORD', None))

    # Use this to optionally connect to a kbucket share:
    # for downloading containers if needed
    ca.setRemoteConfig(alternate_share_ids=['69432e9201d0'])

    # Specify the compute resource (see the note above)
    compute_resource = 'default'
    #compute_resource = 'local-computer'
    #compute_resource = 'ccmlin008-default'
    #compute_resource_ks = 'ccmlin008-kilosort'

    # Use this to control whether we force the processing to re-run (by default it uses cached results)
    os.environ['MLPROCESSORS_FORCE_RUN'] = 'FALSE'  # FALSE or TRUE

    # This is the id of the output -- for later retrieval by GUI's, etc
    output_id = 'visapy_mea'

    # Grab the recordings for testing
    group_name = 'visapy_mea'

    a = ca.loadObject(
        key=dict(name='spikeforest_recording_group', group_name=group_name))

    recordings = a['recordings']
    studies = a['studies']

    # recordings = [recordings[0]]
    # recordings = recordings[0:3]

    # Summarize the recordings
    recordings = sa.summarize_recordings(recordings=recordings,
                                         compute_resource=compute_resource)

    # Sorters (algs and params) are defined below
    sorters = _define_sorters()

    # We will be assembling the sorting results here
    sorting_results = []

    for sorter in sorters:
        # Sort the recordings
        compute_resource0 = compute_resource
        if sorter['name'] == 'KiloSort':
            compute_resource0 = compute_resource_ks
        sortings = sa.sort_recordings(sorter=sorter,
                                      recordings=recordings,
                                      compute_resource=compute_resource0)

        # Append to results
        sorting_results = sorting_results + sortings

    # Summarize the sortings
    sorting_results = sa.summarize_sortings(sortings=sorting_results,
                                            compute_resource=compute_resource)

    # Compare with ground truth
    sorting_results = sa.compare_sortings_with_truth(
        sortings=sorting_results, compute_resource=compute_resource)

    # Aggregate the results
    aggregated_sorting_results = sa.aggregate_sorting_results(
        studies, recordings, sorting_results)

    # Save the output
    print('Saving the output')
    ca.saveObject(key=dict(name='spikeforest_results'),
                  subkey=output_id,
                  object=dict(studies=studies,
                              recordings=recordings,
                              sorting_results=sorting_results,
                              aggregated_sorting_results=ca.saveObject(
                                  object=aggregated_sorting_results)))

    for sr in aggregated_sorting_results['study_sorting_results']:
        study_name = sr['study']
        sorter_name = sr['sorter']
        n1 = np.array(sr['num_matches'])
        n2 = np.array(sr['num_false_positives'])
        n3 = np.array(sr['num_false_negatives'])
        accuracies = n1 / (n1 + n2 + n3)
        avg_accuracy = np.mean(accuracies)
        txt = 'STUDY: {}, SORTER: {}, AVG ACCURACY: {}'.format(
            study_name, sorter_name, avg_accuracy)
        print(txt)
Пример #6
0
def main():
    # generate toy recordings
    delete_recordings = False
    num_recordings = 1
    for num in range(1, num_recordings + 1):
        name = 'toy_example{}'.format(num)
        if delete_recordings:
            if os.path.exists(name):
                shutil.rmtree(name)
        if not os.path.exists(name):
            rx, sx_true = se.example_datasets.toy_example1(duration=60,
                                                           num_channels=4,
                                                           samplerate=30000,
                                                           K=10)
            se.MdaRecordingExtractor.writeRecording(recording=rx,
                                                    save_path=name)
            se.MdaSortingExtractor.writeSorting(sorting=sx_true,
                                                save_path=name +
                                                '/firings_true.mda')

    # Use this to optionally connect to a kbucket share:
    # ca.autoConfig(collection='spikeforest',key='spikeforest2-readwrite',ask_password=True)
    # for downloading containers if needed
    ca.setRemoteConfig(alternate_share_ids=['69432e9201d0'])

    # Specify the compute resource (see the note above)
    compute_resource = None

    # Use this to control whether we force the processing to re-run (by default it uses cached results)
    os.environ['MLPROCESSORS_FORCE_RUN'] = 'FALSE'  # FALSE or TRUE

    # This is the id of the output -- for later retrieval by GUI's, etc
    output_id = 'spikeforest_test0'

    # Grab the recordings for testing
    recordings = [
        dict(recording_name='toy_example{}'.format(num),
             study_name='toy_examples',
             directory=os.path.abspath('toy_example{}'.format(num)))
        for num in range(1, num_recordings + 1)
    ]

    studies = [
        dict(name='toy_examples',
             study_set='toy_examples',
             directory=os.path.abspath('.'),
             description='Toy examples.')
    ]

    # Summarize the recordings
    recordings_B = sa.summarize_recordings(recordings=recordings,
                                           compute_resource=compute_resource)

    # Sorters (algs and params) are defined below
    sorters = define_sorters()

    # We will be assembling the sorting results here
    sorting_results = []

    for sorter in sorters:
        # Sort the recordings
        sortings_A = sa.sort_recordings(sorter=sorter,
                                        recordings=recordings_B,
                                        compute_resource=compute_resource)

        # Summarize the sortings
        sortings_B = sa.summarize_sortings(sortings=sortings_A,
                                           compute_resource=compute_resource)

        # Compare with ground truth
        sortings_C = sa.compare_sortings_with_truth(
            sortings=sortings_B, compute_resource=compute_resource)

        # Append to results
        sorting_results = sorting_results + sortings_C

    # TODO: collect all the units for aggregated analysis

    # Save the output
    print('Saving the output')
    ca.saveObject(key=dict(name='spikeforest_results', output_id=output_id),
                  object=dict(studies=studies,
                              recordings=recordings_B,
                              sorting_results=sorting_results))