Пример #1
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    
    net1 = torch.load("../models/{}.pth".format(nnName))
    optimizer1 = optim.SGD(net1.parameters(), lr = 0, momentum = 0)
    net1.cuda(CUDA_DEVICE)
    
    if dataName != "Uniform" and dataName != "Gaussian":
        testsetout = torchvision.datasets.ImageFolder("../data/{}".format(dataName), transform=transform)
        testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=1,
                                         shuffle=False, num_workers=2)

    if nnName == "densenet10" or nnName == "wideresnet10": 
	testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    if nnName == "densenet100" or nnName == "wideresnet100": 
	testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    
    if dataName == "Gaussian":
        d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)

    elif dataName == "Uniform":
        d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
    else:
	d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut, nnName, dataName, epsilon, temperature) 
	m.metric(nnName, dataName)
Пример #2
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    net1 = vgg1.VGG('VGG16').to(device)
    # Test set: Average loss: 0.0015, Accuracy: 9337 / 10000(93 %)

    if use_cuda:
        net1 = torch.nn.DataParallel(net1)
        cudnn.benchmark = True

    checkpoint = torch.load("../../model/{}.pth".format(nnName))
    net1.load_state_dict(checkpoint['net'])
    net1.eval()

    if dataName != "Uniform" and dataName != "Gaussian":
        testsetout = torchvision.datasets.ImageFolder(
            "../../data/{}".format(dataName), transform=transform)
        testloaderOut = torch.utils.data.DataLoader(testsetout,
                                                    batch_size=1,
                                                    shuffle=False,
                                                    num_workers=2)

    # if nnName == "densenet10" or nnName == "wideresnet10":
    testset = torchvision.datasets.CIFAR10(root='../../data',
                                           train=False,
                                           download=True,
                                           transform=transform)
    testloaderIn = torch.utils.data.DataLoader(testset,
                                               batch_size=1,
                                               shuffle=False,
                                               num_workers=2)
    # if nnName == "densenet100" or nnName == "wideresnet100":
    #     testset = torchvision.datasets.CIFAR100(root='../../data', train=False, download=True, transform=transform)
    #     testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
    #                                                shuffle=False, num_workers=2)

    if dataName == "Gaussian":
        d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn,
                       testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)

    elif dataName == "Uniform":
        d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn,
                  nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
    else:
        d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut,
                   nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
Пример #3
0
def test(nnName, dataName, CUDA_DEVICE, epsilon, temperature):
    
    net1 = torch.load("../models/{}.pth".format(nnName))
    optimizer1 = optim.SGD(net1.parameters(), lr = 0, momentum = 0)
    net1.cuda(CUDA_DEVICE)
    
    if dataName != "Uniform" and dataName != "Gaussian":
        if dataName == "SVHN":
            testsetout = svhn.SVHN("../data/SVHN", split='test', transform=transform, download=True)
        elif dataName in ["HFlip","VFlip"]:
            testsetout = torchvision.datasets.CIFAR10('../data', train=False, download=True, 
                                                       transform=Flip[dataName])
        elif dataName == "CelebA":
            testsetout = torchvision.datasets.ImageFolder(
                "../data/{}".format(dataName), 
                transform=transforms.Compose([transforms.CenterCrop(178), Resize(32), transform]))
        else:
            testsetout = torchvision.datasets.ImageFolder("../data/{}".format(dataName), 
                                                          transform=transform)
        testloaderOut = torch.utils.data.DataLoader(testsetout, batch_size=1,
                                         shuffle=False, num_workers=2)

    if nnName == "densenet10" or nnName == "wideresnet10": 
	testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    if nnName == "densenet100" or nnName == "wideresnet100": 
	testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform)
	testloaderIn = torch.utils.data.DataLoader(testset, batch_size=1,
                                         shuffle=False, num_workers=2)
    
    if dataName == "Gaussian":
        d.testGaussian(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)

    elif dataName == "Uniform":
        d.testUni(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderIn, nnName, dataName, epsilon, temperature)
        m.metric(nnName, dataName)
    else:
	d.testData(net1, criterion, CUDA_DEVICE, testloaderIn, testloaderOut, nnName, dataName, epsilon, temperature) 
	m.metric(nnName, dataName)