Пример #1
0
 def predict_and_eval(self, model_path):
     predictor = Predictor.from_checkpoint(default_predictor_params(),
                                           checkpoint=model_path)
     for sample in predictor.predict(file_dataset()):
         self.assertGreater(
             sample.outputs.avg_char_probability,
             0.95)  # The model was trained and should yield good results
Пример #2
0
 def test_raw_dataset_prediction(self):
     args = PredictionAttrs()
     predictor = Predictor.from_checkpoint(PredictorParams(
         progress_bar=False, silent=True),
                                           checkpoint=args.checkpoint[0])
     params = PipelineParams(type=DataSetType.FILE, files=args.files)
     for sample in predictor.predict(params):
         pass
Пример #3
0
 def test_raw_prediction(self):
     args = PredictionAttrs()
     predictor = Predictor.from_checkpoint(PredictorParams(
         progress_bar=False, silent=True),
                                           checkpoint=args.checkpoint[0])
     images = [load_image(file) for file in args.files]
     for result in predictor.predict_raw(images):
         self.assertGreater(result.outputs.avg_char_probability, 0)
Пример #4
0
 def test_white_image_raw_prediction(self):
     args = PredictionAttrs()
     predictor = Predictor.from_checkpoint(PredictorParams(
         progress_bar=False, silent=True),
                                           checkpoint=args.checkpoint[0])
     images = [np.zeros(shape=(200, 50))]
     for result in predictor.predict_raw(images):
         print(result.outputs.sentence)
Пример #5
0
 def test_raw_prediction(self):
     args = PredictionAttrs()
     predictor = Predictor.from_checkpoint(PredictorParams(
         progress_bar=False, silent=True),
                                           checkpoint=args.checkpoint[0])
     images = [load_image(file) for file in args.files]
     for file, image in zip(args.files, images):
         _, prediction, _ = list(predictor.predict_raw([image]))[0]
         print(file, prediction.sentence)
Пример #6
0
def benchmark_prediction(model, batch_size, processes, n_examples, runs=10):
    params = PredictorParams(silent=True)
    predictor = Predictor.from_checkpoint(params, model)

    data = (np.random.random((400, 48)) * 255).astype(np.uint8)
    print("Running with bs={}, proc={}, n={}".format(batch_size, processes,
                                                     n_examples))
    start = time.time()
    for i in range(runs):
        list(predictor.predict_raw([data] * n_examples, batch_size=batch_size))
    end = time.time()

    return (end - start) / runs
Пример #7
0
def create_single_model_predictor():
    checkpoint = os.path.join(this_dir, "models", "best.ckpt")
    predictor = Predictor.from_checkpoint(default_predictor_params(),
                                          checkpoint=checkpoint)
    return predictor