Пример #1
0
def __latvtimea(data, cdata, variable, ncdf, cncdf, ax):
    #format data
    data = ncdf.formatdata(data, 'latvtime', cncdf)
    cdata = ncdf.formatdata(cdata, 'latvtime')

    #anomaly
    data = calc.anomalize(data, cdata, ncdf, cncdf)

    #construct strings
    label = labels[variable]

    #colormap
    cmap = LinearSegmentedColormap('bwr', colors)

    #calculate params
    x, y = calc.getx(ncdf), calc.gety(ncdf)
    z = data.transpose()
    datamax, datamin = calc.getmax(data, True), calc.getmin(data, True)
    v = np.linspace(datamin, datamax, 41)

    #create plot
    cp = plt.contourf(x, y, z, v, extend='both', colors=None, cmap=cmap,
            vmin=datamin, vmax=datamax)
    plt.xlim(x[0], x[-1])
    plt.ylim(-90, 90)

    #create colorbar
    ticks = np.linspace(datamin, datamax, 3)
    cbar = plt.colorbar(cp, orientation='horizontal', extend='both',
            aspect=40, ticks=ticks, format='%.2g')
    cbar.ax.set_xlabel(label)

    #label & title
    plt.xlabel('Years after eruption')
    plt.ylabel('Degrees latitude')

    #add control stats
    cmean = stats.nanmean(cdata.flat)
    cstd = stats.nanstd(cdata.flat)
    string = ('Control mean: ' + '%.2g'%cmean +
            '\nControl standard deviation: ' + '%.2g'%cstd)
    plt.figtext(.02,.02,string, fontsize=12)

    #additional formating
    ax = plt.gca()
    plt.yticks(np.linspace(-90, 90, 7, endpoint=True))

    #show/save plot
    return ax
Пример #2
0
def __latvtime(data, variable, ncdf, cncdf, ax):
    #construct strings
    label = labels[variable]

    #format data
    data = ncdf.formatdata(data, 'latvtime', cncdf)

    #calculate params
    x, y = calc.getx(ncdf), calc.gety(ncdf)
    z = data.transpose()
    datamax, datamin = calc.getmax(data), calc.getmin(data)
    v = np.linspace(datamin, datamax, 41)

    cmap = LinearSegmentedColormap('red', colors2)

    #create plot
    cp = plt.contourf(x, y, z, v, extend='both', vmin=datamin, vmax=datamax,
            cmap=cmap)
    plt.xlim(x[0], x[-1])
    plt.ylim(-90, 90)

    #create colorbar
    ticks = np.linspace(datamin, datamax, 3)
    cbar = plt.colorbar(cp, orientation='horizontal', extend='both',
            aspect=40, ticks=ticks)
    cbar.ax.set_xlabel(label)

   #label & title
    plt.xlabel('Years after eruption')
    plt.ylabel('Degrees latitude')

    #additional formating
    ax = plt.gca()
    plt.yticks(np.linspace(-90, 90, 7, endpoint=True))

    #show/save plot
    return ax
Пример #3
0
def latvtimegiss(data, variable, ncdf):
    plt.figure(figsize=figsize)
    #construct strings
    label = labels[variable]
    if variable in names:
        title = names[variable]
    else:
        title = variable
    subtitle = ncdf.filetitle
    filename = variable + '_' + filenames[ncdf.filename] + '_lvt' + '.eps'

    #calculate params
    x, y = calc.getx(ncdf), calc.gety(ncdf)
    z = data.transpose()
    datamax, datamin = calc.getmax(data), calc.getmin(data)
    v = np.linspace(datamin, datamax, 17)

    #colormap
    #cmap = plt.get_cmap('jet')
    #cmap.set_under(color='w')
    cdict = matplotlib.cm.get_cmap('jet')._segmentdata
    if cdict['red'][1]!=(0.05,1,1):
        cdict['red'] = list(cdict['red'])
        cdict['red'][0]=(0,1,1)
        cdict['red'].insert(1, (0.05,1,1))
        cdict['red'] = tuple(cdict['red'])
        cdict['blue'] = list(cdict['blue'])
        cdict['blue'][0]=(0,1,1)
        cdict['blue'].insert(1, (0.05,1,1))
        cdict['blue'] = tuple(cdict['blue'])
        cdict['green'] = list(cdict['green'])
        cdict['green'][0]=(0,1,1)
        cdict['green'].insert(1, (0.05,1,1))
        cdict['green'] = tuple(cdict['green'])
    cmap = LinearSegmentedColormap('jet2', cdict)

    #create plot
    extend = ''
    if datamin == 0:
        extend='max'
    else:
        extend='both'
    norm = Normalize(vmin=datamin, vmax=datamax, clip=False)
    cp = plt.contourf(x, y, z, v, extend=extend, vmin=datamin, vmax=datamax,
            cmap=cmap, origin='lower', norm=norm)
    plt.xlim(x[0], x[-1])
    plt.ylim(-90, 90)

    #create colorbar
    cbar = plt.colorbar(cp, orientation='horizontal',
            aspect=15, format='%.2g', pad=0.2)
    cbar.ax.set_xlabel(label)

    #label & title
    plt.xlabel('Years after eruption')
    plt.ylabel('Latitude')
    '''for label in cbar.ax.xaxis.get_ticklabels()[1::2]:
        label.set_visible(False)'''
    newlabels=[]
    for label in cbar.ax.xaxis.get_ticklabels()[::2]:
        newlabels.append(label.get_text())
    cbar.ax.xaxis.set_ticklabels(newlabels)
    newticks=[]
    for tick in cbar.ax.get_xticks()[::2]:
        newticks.append(tick)
    cbar.ax.set_xticks(newticks)

    #additional formating
    ax = plt.gca()
    plt.yticks(np.linspace(-90, 90, 7, endpoint=True))
    ax.get_xaxis().majorTicks[-1].label1.set_horizontalalignment('right')
    ax.get_yaxis().majorTicks[-1].label1.set_verticalalignment('top')
    plt.rc('font', **font)
    plt.title(title)

    #show/save plot
    plt.savefig(filename, bbox_inches='tight')
    #print str(max(z.flat)) + " + " + str(min(z.flat))
    plt.close()
Пример #4
0
def latvtimea(data, cdata, variable, ncdf, controlncdf):
    #anomaly
    plt.figure(figsize=figsize)
    data = calc.anomalize(data, cdata, ncdf, controlncdf)

    #construct strings
    label = labels[variable]
    if variable in names:
        title = names[variable]
    else:
        title = variable
    subtitle = title
    filename = (variable + '_' + filenames[ncdf.filename] + '_lvta_' +
            filenames[controlncdf.filename] + '.eps')

    #colormap
    cmap = LinearSegmentedColormap('bwr', colors)

    #calculate params
    x, y = calc.getx(ncdf), calc.gety(ncdf)
    z = data.transpose()
    datamax, datamin = calc.getmax(data, True), calc.getmin(data, True)
    v = np.linspace(datamin, datamax, 17)

    #create plot
    cp = plt.contourf(x, y, z, v, extend='both', colors=None, cmap=cmap,
            vmin=datamin, vmax=datamax)
    plt.xlim(x[0], x[-1])
    plt.ylim(-90, 90)

    #create colorbar
    cbar = plt.colorbar(cp, orientation='horizontal',
            aspect=15, format="%.2g", pad = .2)
    cbar.ax.set_xlabel(label)

    #label & title
    plt.xlabel('Years after eruption')
    plt.ylabel('Latitude')

    #add control stats
    '''cmean = stats.nanmean(cdata.flat)
    #cmean = calc.anlmean(cdata)
    cstd = stats.nanstd(cdata.flat)
    #cstd = calc.anlstd(cdata)
    string = ('Control mean: ' + '%.2g'%cmean +
            '\nControl standard deviation: ' + '%.2g'%cstd)
    plt.figtext(.02,.02,string, fontsize=12)'''
    newlabels=[]
    for label in cbar.ax.xaxis.get_ticklabels()[::2]:
        newlabels.append(label.get_text())
    cbar.ax.xaxis.set_ticklabels(newlabels)
    newticks=[]
    for tick in cbar.ax.get_xticks()[::2]:
        newticks.append(tick)
    cbar.ax.set_xticks(newticks)

    #additional formating
    ax = plt.gca()
    ax.get_xaxis().majorTicks[-1].label1.set_horizontalalignment('right')
    plt.yticks(np.linspace(-90, 90, 7, endpoint=True))
    ax.get_yaxis().majorTicks[-1].label1.set_verticalalignment('top')
    plt.rc('font', **font)
    plt.title(subtitle)

    #show/save plot
    plt.savefig(filename, bbox_inches='tight')
    plt.close()