def get_non_sensor_index(): ic0_file_name = "../data/csv_ic0/IC0_20030101.csv" data = calc_data.get_1day_ic0_data(ic0_file_name) data = pd.concat([latlon_ex, data], axis=1) lonlat_idx = np.array(data.loc[(data.Lat>=80)&(data.ic0_145.isnull()), ["Lon", "Lat"]].index) rst = np.zeros(145**2) rst[lonlat_idx] = 1 np.savetxt("../data/non_sensor_index.csv", rst, delimiter=",") """
def main_data(start, end, **kwargs): span = kwargs["span"] region = kwargs["region"] get_columns = kwargs["get_columns"] accumulate = kwargs["accumulate"] date_ax, date_ax_str = get_date_ax(start, end) N = len(date_ax_str) skipping_date_str = [] accumulate_data = [] data = [] for i, day in enumerate(date_ax_str): print("{}/{}: {}".format(i + 1, N, day)) print("start: {}, end: {}".format(start, end)) year = day[2:4] month = day[4:6] #ファイル名の生成 wind_file_name = "../data/csv_w/ecm" + day[2:] + ".csv" ice_file_name = "../data/csv_iw/" + day[2:] + ".csv" ic0_145_file_name = "../data/csv_ic0/IC0_" + day + ".csv" sit_145_file_name = "../data/csv_sit/SIT_" + day + ".csv" coeff_file_name = "../data/csv_A_30/ssc_amsr_ads" + str(year) + str( month) + "_" + str(span) + "_fin.csv" hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + str( day)[:6] + ".csv" # wind10m_file_name = "../data/netcdf4/" + day[2:] + ".csv" # t2m_file_name = "../data/netcdf4/" + day[2:] + ".csv" skipping_boolean = ("coeff" not in get_columns) and (not all([ os.path.isfile(wind_file_name), os.path.isfile(ice_file_name), os.path.isfile(coeff_file_name) ])) if ("ic0_145" in get_columns): skipping_boolean = ("coeff" not in get_columns) and (not all([ os.path.isfile(wind_file_name), os.path.isfile(ice_file_name), os.path.isfile(coeff_file_name), os.path.isfile(ic0_145_file_name) ])) if ("sit_145" in get_columns): skipping_boolean = ("coeff" not in get_columns) and (not all([ os.path.isfile(wind_file_name), os.path.isfile(ice_file_name), os.path.isfile(coeff_file_name), os.path.isfile(sit_145_file_name) ])) if skipping_boolean == True: print("\tSkipping " + day + " file...") date_ax_str.remove(day) bb = date(int(day[:4]), int(day[4:6]), int(day[6:])) date_ax.remove(bb) skipping_date_str.append(day) continue data = pd.DataFrame({"data_idx": np.array(ocean_grid_145).ravel()}) if "ex_1" in get_columns: print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name, ice_file_name, coeff_file_name)) tmp = calc_data.get_w_regression_data(wind_file_name, ice_file_name, coeff_file_name) data = pd.concat([data, tmp], axis=1) if "ex_2" in get_columns: print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name, ice_file_name, hermert_file_name)) tmp = calc_data.get_w_hermert_data(wind_file_name, ice_file_name, hermert_file_name) data = pd.concat([data, tmp], axis=1) if "w" in get_columns: print("\t{}".format(wind_file_name)) tmp = calc_data.get_1day_w_data(wind_file_name) data = pd.concat([data, tmp], axis=1) if "iw" in get_columns: print("\t{}".format(ice_file_name)) tmp = calc_data.get_1day_iw_data(ice_file_name) data = pd.concat([data, tmp], axis=1) if "ic0_145" in get_columns: print("\t{}".format(ic0_145_file_name)) tmp = calc_data.get_1day_ic0_data(ic0_145_file_name) data = pd.concat([data, tmp], axis=1) if "sit_145" in get_columns: print("\t{}".format(sit_145_file_name)) tmp = calc_data.get_1day_sit_data(sit_145_file_name) data = pd.concat([data, tmp], axis=1) if "coeff" in get_columns: print("\t{}".format(coeff_file_name)) tmp = calc_data.get_1month_coeff_data(coeff_file_name) data = pd.concat([data, tmp], axis=1) if "hermert" in get_columns: print("\t{}".format(hermert_file_name)) tmp = calc_data.get_1month_hermert_data(hermert_file_name) data = pd.concat([data, tmp], axis=1) """ if "w10m" in get_columns: tmp = calc_data.get_1day_w10m_data(wind10m_file_name) data = pd.concat([data, tmp], axis=1) if "t2m" in get_columns: tmp = calc_data.get_1day_t2m_data(t2m_file_name) data = pd.concat([data, tmp], axis=1) """ data = calc_data.get_masked_region_data(data, region) if ("coeff" in get_columns): print("\tSelected only coeff data. Getting out of the loop...") continue if accumulate == True: data_1 = data.drop("data_idx", axis=1) print("\t{}".format(data_1.columns)) accumulate_data.append(np.array(data_1)) if accumulate == True: print("accumulate: True\tdata type: array") return date_ax, date_ax_str, skipping_date_str, accumulate_data else: print("accumulate: False\tdata type: DataFrame") return date_ax, date_ax_str, skipping_date_str, data
def main_data(start, end, **kwargs): span = kwargs["span"] region = kwargs["region"] get_columns = kwargs["get_columns"] accumulate = kwargs["accumulate"] date_ax, date_ax_str = get_date_ax(start, end) N = len(date_ax_str) skipping_date_str = [] accumulate_data = [] for i, day in enumerate(date_ax_str): print("{}/{}: {}".format(i + 1, N, day)) year = day[2:4] month = day[4:6] #ファイル名の生成 wind_file_name = "../data/wind_data/ecm" + day[2:] + ".csv" ice_file_name = "../data/ice_wind_data/" + day[2:] + ".csv" ic0_145_file_name = "../data/IC0_csv/2" + day + "A.csv" ic0_900_file_name = "../data/IC0_csv/2" + day + "A.csv" coeff_file_name = "../data/A_csv/ssc_amsr_ads" + str(year) + str( month) + "_" + str(span) + "_fin.csv" wind10m_file_name = "../data/netcdf4/" + day[2:] + ".csv" t2m_file_name = "../data/netcdf4/" + day[2:] + ".csv" if not all([ os.path.isfile(wind_file_name), os.path.isfile(ice_file_name), os.path.isfile(ic0_145_file_name), os.path.isfile(coeff_file_name) ]): print("\tSkipping " + day + " file...") date_ax_str.remove(day) date_ax.remove(datetime(day[:4] + "-" + day[4:6] + "-" + day[6:])) skipping_date_str.append(day) continue data = pd.DataFrame({"data_idx": np.zeros(145 * 145)}) iw_idx_t, ic0_idx_t = np.array([-1]), np.array([-1]) if "ex_1" in get_columns: tmp = calc_data.get_w_regression_data(wind_file_name, ice_file_name, coeff_file_name) iw_idx_t = np.array(tmp["data_idx"]) data = pd.concat([data, tmp.loc[:, ["A_by_day", "theta_by_day"]]], axis=1) if "w" in get_columns: tmp = calc_data.get_1day_w_data(wind_file_name) data = pd.concat([data, tmp], axis=1) if "iw" in get_columns: tmp = calc_data.get_1day_ice_data(ice_file_name) iw_idx_t = np.array(tmp["iw_idx_t"]) data = pd.concat([data, tmp.loc[:, ["iw_u", "iw_v", "iw_speed"]]], axis=1) if "ic0_145" in get_columns: tmp = calc_data.get_1day_ic0_data(ic0_file_name, grid900to145_file_name) ic0_idx_t = np.array(tmp["ic0_idx_t"]) data = pd.concat([data, tmp.loc[:, ["ic0_145"]]], axis=1) if "coeff" in get_columns: tmp = calc_data.get_1month_coeff_data(coeff_file_name) data = pd.concat([data, tmp], axis=1) if "w10m" in get_columns: tmp = calc_data.get_1day_w10m_data(wind10m_file_name) data = pd.concat([data, tmp], axis=1) if "t2m" in get_columns: tmp = calc_data.get_1day_t2m_data(t2m_file_name) data = pd.concat([data, tmp], axis=1) mat = iw_idx_t.ravel().tolist() + ic0_idx_t.ravel().tolist() data_t_idx = calc_data.get_non_nan_idx(mat, ocean_idx, strict=True) data.loc[data.data_idx, data_t_idx] = 1 data = calc_data.get_masked_region_data(data, region) if ("coeff" in get_columns) and (len(get_columns) == 1): print("\tSelected only coeff data. Getting out of the loop...") continue if accumulate == True: data = data.loc[:, get_columns] print("\t{}".format(data.columns)) accumulate_data.append(np.array(data)) if accumulate == True: print("accumulate: True\tdata type: array") return date_ax, date_ax_str, skipping_date_str, accumulate_data else: print("accumulate: False\tdata type: DataFrame") return date_ax, date_ax_str, skipping_date_str, data