Пример #1
0
    def test_simplest_precharged(self):
        args = misc.Namespace()
        args.samples = [64]
        args.n_test = 0
        args.loop = 1
        args.full = False
        args.period = 16
        args.ic = "precharge"
        args.seed = SEED
        args.inputs = INPUTS

        conf_seq = mconf.calib(self.meta, args, True)

        tb = sims.StageTestbench.Scalar(self.real.as_delta_sigma()[0], [], conf_seq)
        self.system_compare(tb)
Пример #2
0
def run(args):
    assert len(args.bits) == len(args.seed)

    directory = args.location
    mkdir(misc.Namespace(directory=directory, mode="750"))
    path_context = data.PathContext.relative()

    names = [
        "paper_set_{}{}".format(ii, "_DRY" if DRY_RUN else "")
        for ii in range(len(args.bits))
    ]

    if not JUST_PLOT:
        for ii, bits, seed, name in zip(count(), args.bits, args.seed, names):
            print("SET {}/{}".format(ii + 1, len(args.bits)))
            adcs = gen_adc(bits, seed, args, args.n_adcs)
            uncertain, ref, thres = characterize(args, adcs, seed)

            if 0 in TESTS:
                uncertain = prepickle_data(uncertain, path_context, directory,
                                           "{}.{}".format(name, "uncertain"))
            else:
                uncertain = None

            if 1 in TESTS:
                ref = prepickle_data(ref, path_context, directory,
                                     "{}.{}".format(name, "ref"))
            else:
                ref = None

            if 2 in TESTS:
                thres = prepickle_data(thres, path_context, directory,
                                       "{}.{}".format(name, "thres"))
            else:
                thres = None

            with open(name, 'wb') as f:
                pickle.dump((
                    uncertain,
                    ref,
                    thres,
                ),
                            f,
                            protocol=pickle.HIGHEST_PROTOCOL)

    for name in names:
        with open(name, 'rb') as f:
            dat = pickle.load(f)
            uncertain, ref, thres = dat

            uncertain = postpickle_data(uncertain, path_context)
            ref = postpickle_data(ref, path_context)
            thres = postpickle_data(thres, path_context)

            dat = (
                uncertain,
                ref,
                thres,
            )

            real_thres_s = data.at_least_ndarray(args.real_thres_s)

            sample_adc = dat[TESTS[0]][0][0, 0, 0]
            fsr = sample_adc.stages[0].meta.fsr
            n_bits = int(
                np.sum([
                    np.floor(stage.meta.n_bits) for stage in sample_adc.stages
                ]))
            n_bits += int(gen.infer_thres_bits(sample_adc.tail)[0])

            lsb = gen.compute_lsb(n_bits, *fsr)

            min_snr_ref_v = args.min_snr_ref_v
            min_snr_thres_v = args.min_snr_thres_v

            if min_snr_ref_v is None:
                min_snr_ref_v = lsb / 2

            if min_snr_thres_v is None:
                min_snr_thres_v = lsb / 2

            snr_ref_inv = np.linspace(0, min_snr_ref_v, args.samples_snr_ref)
            snr_thres_inv = np.linspace(0, min_snr_thres_v,
                                        args.samples_snr_thres)

            u_args = (
                "{}.uncertain".format(name),
                uncertain,
                (
                    "Real threshold voltage standard deviation (LSB)",
                    "Modeled std (LSB)",
                ),
            )
            u_kwargs = {"x_axes": real_thres_s, "y_axes": real_thres_s}

            t_args = (
                "{}.thres".format(name),
                thres,
                (
                    "Real threshold voltage standard deviation (LSB)",
                    "Thres. noise (SNR)",
                ),
            )
            t_kwargs = {
                "x_axes": real_thres_s,
                "y_axes": snr_thres_inv,
                "noise": True
            }

            r_args = (
                "{}.ref".format(name),
                ref,
                (
                    "Real threshold voltage standard deviation (LSB)",
                    "Ref. noise (SNR)",
                ),
            )
            r_kwargs = {
                "x_axes": real_thres_s,
                "y_axes": snr_ref_inv,
                "noise": True
            }

            if TOGETHER:
                f = plots.figure(figsize=(
                    10,
                    4,
                ) if FULL_SIZE else (
                    5 * 1.5,
                    2 * 1.5,
                ))
                ax = f.add_subplot(111)
                h0 = []
                h1 = []
                h2 = []

                brightness = 1

                if 0 in TESTS:
                    f, ax, h0 = plot2d(*u_args,
                                       **u_kwargs,
                                       ax=ax,
                                       color=(brightness, 0, 0),
                                       first_black=True,
                                       index=0,
                                       legend_handlers=h0,
                                       hide_constants=False)
                    h0 = reversed(h0)

                if 2 in TESTS:
                    f, ax, h2 = plot2d(*t_args,
                                       **t_kwargs,
                                       ax=ax,
                                       color=(0, 0, brightness),
                                       first_black=None,
                                       index=2,
                                       legend_handlers=h2)
                    h2 = reversed(h2)

                if 1 in TESTS:
                    f, ax, h1 = plot2d(*r_args,
                                       **r_kwargs,
                                       ax=ax,
                                       color=(0, brightness, 0),
                                       first_black=None,
                                       index=1,
                                       legend_handlers=h1)
                    h1 = reversed(h1)

                h = []
                for hh in (h0, h1, h2):
                    h.extend(hh)

                proportion = 0.65
                box = ax.get_position()
                ax.set_position(
                    [box.x0, box.y0, box.width * proportion, box.height])
                ax.set_facecolor((0.85, ) * 3)

                legend_handlers = h
                paths, names = tuple(zip(*legend_handlers))

                f.legend(paths,
                         names,
                         loc='center left',
                         bbox_to_anchor=(proportion, 0.5))
                prev = mpl.rcParams['hatch.linewidth']
                mpl.rcParams['hatch.linewidth'] = 5.0
                f.savefig("{}.png".format(name), dpi=300)

                plots.show()
                mpl.rcParams['hatch.linewidth'] = prev

            else:
                if 0 in TESTS:
                    plot2d(*u_args,
                           **u_kwargs,
                           color=(0.8, 0, 1),
                           hide_constants=False)

                if 1 in TESTS:
                    plot2d(*r_args,
                           **r_kwargs,
                           color=(0.8, 0, 1),
                           hide_constants=False)

                if 2 in TESTS:
                    plot2d(*t_args,
                           **t_kwargs,
                           color=(0.8, 0, 1),
                           hide_constants=False)

    print("DONE")
Пример #3
0
                    plot2d(*t_args,
                           **t_kwargs,
                           color=(0.8, 0, 1),
                           hide_constants=False)

    print("DONE")


if __name__ == "__main__":
    # This was supoused to be built using argparse, but time contraints!
    N_FOR_STD = 4
    SAMPLES = 4
    SAMPLES_THRES = 3
    SAMPLES_REF = 3

    args = misc.Namespace()

    # Generation args
    args.bits = [[3.5, 3.5, 2.5, 4]]
    # args.bits = [4.5, 3.5, 3.5, 4]
    args.seed = [486582]

    args.s_cap = 0.0025
    args.s_ref = None

    # Characterization args
    args.real_thres_s = np.linspace(0, 0.5 / 3, SAMPLES)  # In lsb
    args.confidence = 0.95

    args.n_adcs = N_FOR_STD