Пример #1
0
def characterize(args, adcs, seed):

    with misc.push_random_state():
        np.random.seed(seed)
        seeds = [np.random.randint(0, 4294967296) for _ in range(3)]

    assert not args.relative_snr_ref, "TODO implement relative"
    assert not args.relative_snr_thres, "TODO implement relative"

    min_snr_ref_v = args.min_snr_ref_v
    min_snr_thres_v = args.min_snr_thres_v

    fsr = adcs[0].stages[0].meta.fsr
    n_bits = int(np.sum([np.floor(stage.meta.n_bits) for stage in adcs[0].stages]))
    n_bits += int(gen.infer_thres_bits(adcs[0].tail)[0])

    lsb = gen.compute_lsb(n_bits, *fsr)

    if min_snr_ref_v is None:
        min_snr_ref_v = lsb/2

    if min_snr_thres_v is None:
        min_snr_thres_v = lsb/2

    snr_ref_inv = np.linspace(0, min_snr_ref_v, args.samples_snr_ref)
    snr_thres_inv = np.linspace(0, min_snr_thres_v, args.samples_snr_thres)

    snr_ref = np.power((fsr[1] - fsr[0]), 2)/np.power(snr_ref_inv, 2)
    snr_thres = np.power((fsr[1] - fsr[0]), 2)/np.power(snr_thres_inv, 2)

    snr_ref[0] = 0
    snr_thres[0] = 0

    real_thres_s = data.at_least_ndarray(args.real_thres_s)

    shape = (np.size(real_thres_s), np.size(adcs),)
    adcs_sweep = np.tile(np.array(adcs, dtype=object), shape[:-1] + (1,))

    # Sweep thres
    with misc.push_random_state():
        np.random.seed(seed)
        for idx in cartesian(*tuple(range(s) for s in shape)):
            r_thres_s = real_thres_s[idx[0]]
            adcs_sweep[idx] = copy.deepcopy(adcs_sweep[idx])
            for stage in adcs_sweep[idx].stages:
                r_thres_s_local = r_thres_s * stage.meta.lsb
                stage._thres = np.random.normal(stage.thres, r_thres_s_local)
            adcs_sweep[idx]._tail = np.random.normal(adcs_sweep[idx].tail, r_thres_s)

    uncertain = characterize_uncertanty(args, adcs_sweep, seed, real_thres_s)
    ref = characterize_noise(args, adcs_sweep, seed, snr_ref, real_thres_s, ref=True)
    thres = characterize_noise(args, adcs_sweep, seed, snr_thres, real_thres_s, ref=False)

    return uncertain, ref, thres
Пример #2
0
def calibrate_single(args, adc, lsb_scale, seed, snr_ref, snr_thres):
    assert len(args.samples) == 1
    assert args.n_test == 0

    delta_sigma = adc.as_delta_sigma()
    adc_ideal = adc.as_ideal()
    ideal_delta_sigma = adc.as_delta_sigma()

    calibrated_stages = []
    trully_calibrated = True

    with misc.push_random_state():
        np.random.seed(seed)
        seeds = [
            np.random.randint(0, 4294967296) for _ in range(len(delta_sigma))
        ]

    for_iter = zip(seeds, delta_sigma, ideal_delta_sigma, adc_ideal.stages)
    for seed, ds_stage, ideal, pipe_ideal in for_iter:
        meta = ds_stage.meta
        ins = np.zeros((
            0,
            meta.n_diff,
        ))
        cargs = copy.deepcopy(args)
        cargs.seed = seed

        conf = make_config(meta, cargs, False)
        tb = sims.StageTestbench.Scalar(ds_stage, ins, conf)
        simulator = sims.Simulator(seed, snr_ref, snr_thres)

        if DRY_RUN:
            calibrated = copy.deepcopy(ds_stage)

        else:
            codes, _ = tb.simulate(simulator)

            system = cal.CalibrationSystem(ideal,
                                           conf,
                                           codes,
                                           mask=cal.json_dicts_to_mask(
                                               ideal, [{
                                                   "parameter": "thres"
                                               }]),
                                           sum_conf=True,
                                           use_bands=True)

            calibrated, _ = system.run_calibration(
                samples_step=args.samples[0] + 1, lsb_scale=lsb_scale)

            x = system.map_in(calibrated, ins)
            trully_calibrated = (trully_calibrated and system.system(
                x, scalar=True, lsb_scale=lsb_scale) == 0)

        calibrated._thres = pipe_ideal.thres
        calibrated_stages.append(calibrated)

    calibrated = gen.PipeParameters(calibrated_stages, adc_ideal.tail)
    return calibrated, trully_calibrated
Пример #3
0
def gen_adc(bits, seed, args, n_adcs=1):
    assert len(bits) > 1

    adcs = []
    with misc.push_random_state():
        np.random.seed(seed)
        seeds = [np.random.randint(0, 4294967296) for _ in range(n_adcs)]

    for seed in seeds:
        with misc.push_random_state():
            np.random.seed(seed)
            sub_seeds = [
                np.random.randint(0, 4294967296) for _ in range(len(bits))
            ]

        stages = []
        for ii, cbits, sseed in zip(count(), bits[:-1], sub_seeds):
            _, half_bit = gen.parse_bits(cbits)
            n_refs = 3 if half_bit else 2
            eff = bits_to_required_eff(cbits)
            eff = max(eff, 0.95)
            meta = gen.StageMeta(cbits, n_refs, eff=eff, seed=sseed)

            s_ref = args.s_ref
            if s_ref is None:
                s_ref = 0.5 * meta.lsb / 3

            stage = meta.generate_gaussian(S_TAU,
                                           s_cap=args.s_cap,
                                           s_refs=s_ref,
                                           s_thres=0,
                                           s_cm=0)
            stages.append(stage)

        cbits, half_bit = gen.parse_bits(bits[-1])
        n_refs = 3 if half_bit else 2
        tail_meta = gen.StageMeta(cbits,
                                  n_refs,
                                  half_bit=half_bit,
                                  seed=sub_seeds[-1])
        tail = meta.generate_ideal().thres

        adc = gen.PipeParameters(stages, tail)
        adcs.append(adc)

    return adcs
Пример #4
0
    def __init__(self,
                 seed,
                 ref_snr=0,
                 thres_snr=0,
                 in_snr=0,
                 u_history=True,
                 data_location=None):
        super().__init__(data_location)

        self._seed = seed
        self._u_history = u_history
        self._ref_snr = ref_snr
        self._thres_snr = thres_snr
        self._in_snr = in_snr

        with push_random_state() as state_store:
            np.random.seed(self._seed)
        self._random_state = state_store
Пример #5
0
def calib(meta, args, interlace, use_full_range=None):
    n_caps = meta.n_caps
    n_refs = meta.n_refs
    n_diff = meta.n_diff

    n_cs = (n_caps - 1) // 2
    n_cf = n_caps - n_cs

    use_full_range = misc.default(use_full_range, n_cs < 2)
    ds_samples = args.samples

    if args.n_test > 0:
        raise ValueError("Minimal does not support test inputs.")

    comb_cs = misc.iterate_combinations(n_caps, n_cs)
    if args.full:
        comb_cs = [tuple(misc.iterate_permutations(cs)) for cs in comb_cs]
        comb_cs = [elem for tlp in comb_cs for elem in tlp]

    slice_ = slice(None) if use_full_range else slice(1, -1)

    comb_refs = gen.ds_map(n_cs, n_refs, n_cs * (n_refs - 1) + 1)
    comb_refs = np.transpose(comb_refs[:, slice_], (
        1,
        0,
        2,
    ))
    comb_refs = comb_refs.tolist()
    comb_refs = [(
        comb_refs[ii],
        comb_refs[jj],
    ) for ii in range(len(comb_refs)) for jj in range(ii + 1, len(comb_refs))]

    comb_cs = list(comb_cs)
    comb_refs = list(comb_refs)

    even_configs = []
    even_ins = []

    ics = []

    with misc.push_random_state():
        seed = None if args.seed is None else int(args.seed)
        np.random.seed(seed)

        for cs_ii, refs_ii in cartesian(comb_cs, comb_refs):
            even_configs.append(gen.Configuration(meta, cs_ii))

            top_ii, bot_ii = refs_ii
            if args.inputs == "":
                sub_seed = np.random.randint(0, 4294967296)
                even_ins.append(
                    gen.InternalRandom(meta, np.size(cs_ii), sub_seed))

            else:
                top = gen.InternalDC(meta, top_ii)
                bot = gen.InternalDC(meta, bot_ii)

                even_ins.append(gen.ACCombinator(meta, top, bot, args.period))

            inv = [[n_refs - 1 - iii for iii in ii] for ii in top_ii]
            inv = inv + [[n_refs // 2, n_refs - n_refs // 2][:n_diff]
                         ] * (n_cf - n_cs)
            ics.append(gen.InitialCondition(meta, inv))

    if interlace:
        n_cs_h = n_cs // 2
        assert n_cs_h > 0, "Not enough capacitors to decrease bits."

        odd_configs = []
        odd_ins = []

        for conf, in_ in zip(even_configs, even_ins):
            left = (n_cs - n_cs_h) // 2
            cs_range = range(left, left + n_cs_h)
            mask = np.zeros((n_cs, ), dtype=bool)
            mask[cs_range] = 1

            odd_configs.append(
                gen.Configuration(conf.meta, conf.cs[cs_range, :]))
            odd_ins.append(gen.InputMask(in_.meta, in_, mask))

    else:
        odd_ins = even_ins
        odd_configs = even_configs

    conf_sets = []
    parity = 0
    for samples in ds_samples:
        if parity == 0:
            configs = even_configs
            inputs = even_ins

        else:
            configs = odd_configs
            inputs = odd_ins

        conf_sets.append(gen.ConfigurationSet(samples, inputs, configs))
        parity = (parity + 1) % 2

    if args.ic == "clear":
        ics = [gen.InitialCondition.Discharged(meta, n_cf)] * len(odd_ins)
    elif args.ic == "precharge":
        pass
    else:
        raise ValueError("ic type {} not supported".format(args.ic))

    return gen.ConfigurationSequence(ics, conf_sets * args.loop)