Пример #1
0
def initialize_parameters():
    print('Initializing parameters...')

    import os

    # Obtain the path of the directory of this script
    file_path = os.path.dirname(os.path.realpath(__file__))

    # Import the CANDLE library
    import sys
    sys.path.append(candle_lib)
    import candle_keras as candle

    # Instantiate the candle.Benchmark class
    mymodel_common = candle.Benchmark(file_path,
                                      os.getenv("DEFAULT_PARAMS_FILE"),
                                      'keras',
                                      prog='myprog',
                                      desc='My model')

    # Get a dictionary of the model hyperparamters
    hyperparams = candle.initialize_parameters(mymodel_common)

    # Return the dictionary of the hyperparameters
    return (hyperparams)
Пример #2
0
def initialize_parameters():
    gae_common = candle.Benchmark('./',
                                  'gae_params.txt',
                                  'keras',
                                  prog='gae_baseline_keras2',
                                  desc='GAE Network')

    # Initialize parameters
    gParameters = default_utils.initialize_parameters(gae_common)

    return gParameters
Пример #3
0
def initialize_parameters():
    t29_common = candle_keras.Benchmark(file_path,
                                        't29_default_model.txt',
                                        'keras',
                                        prog='t29res.py',
                                        desc='resnet')

    # Need a pointer to the docs showing what is provided
    # by default
    additional_definitions = [{
        'name': 'connections',
        'default': 1,
        'type': int,
        'help': 'The number of residual connections.'
    }, {
        'name':
        'distance',
        'default':
        1,
        'type':
        int,
        'help':
        'Residual connection distance between dense layers.'
    }, {
        'name': 'model',
        'default': 'model.json',
        'type': str,
        'help': 'Name of json model description file.'
    }, {
        'name': 'weights',
        'default': 'model.h5',
        'type': str,
        'help': 'Name of h5 weights file.'
    }, {
        'name':
        'n_pred',
        'default':
        1,
        'type':
        int,
        'help':
        'Number of predictions to do on each sample.'
    }]
    t29_common.additional_definitions = additional_definitions
    gParameters = candle_keras.initialize_parameters(t29_common)
    return gParameters
Пример #4
0
def initialize_parameters():
    t29_common = candle_keras.Benchmark(file_path, 't29_default_model.txt','keras',
                            prog='/t29res.py',desc='resnet')

#A list common parsed parameters are available here: https://ecp-candle.github.io/Candle/html/_modules/default_utils.html#get_common_parser

    additional_definitions = [
        {'name':'connections',
         'default':1,
         'type':int,
         'help':'The number of residual connections.'},
        {'name':'distance',
         'default':1,
         'type':int,
         'help':'Residual connection distance between dense layers.'}
    ]
    t29_common.additional_definitions = additional_definitions
    gParameters = candle_keras.initialize_parameters(t29_common)
    return gParameters
Пример #5
0
def initialize_parameters():
    t29_common = candle_keras.Benchmark(file_path, 't29_default_model.txt','keras',
                            prog='t29res.py',desc='resnet')

    # Need a pointer to the docs showing what is provided
    # by default
    additional_definitions = [
        {'name':'connections',
         'default':1,
         'type':int,
         'help':'The number of residual connections.'},
        {'name':'distance',
         'default':1,
         'type':int,
         'help':'Residual connection distance between dense layers.'}
    ]
    t29_common.additional_definitions = additional_definitions
    gParameters = candle_keras.initialize_parameters(t29_common)
    return gParameters
Пример #6
0
def initialize_parameters():

    # Add the candle_keras library to the Python path
    import sys, os
    sys.path.append(os.getenv("CANDLE") + '/Candle/common')

    # Instantiate the Benchmark class (the values of the prog and desc parameters don't really matter)
    import candle_keras as candle
    mymodel_common = candle.Benchmark(os.path.dirname(
        os.path.realpath(__file__)),
                                      os.getenv("DEFAULT_PARAMS_FILE"),
                                      'keras',
                                      prog='myprogram',
                                      desc='My CANDLE example')

    # Read the parameters (in a dictionary format) pointed to by the environment variable DEFAULT_PARAMS_FILE
    gParameters = candle.initialize_parameters(mymodel_common)

    # Return this dictionary of parameters
    return (gParameters)