Пример #1
0
def Circle_HT(input_image, d_range, smoothing):
    """
    Circle Hough Transform
    :param d_range: range of diameters
    :param smoothing: remove noise
    :return: coordinate of circles, accumulation matrix
    """
    # Generate probe circle
    points = []
    for r in range(int(d_range[0] / 2), int(d_range[1] / 2 + 1)):  # use value of radius
        for t in range(steps):
            theta = 2 * pi * t / steps
            points.append((r, int(r * cos(theta)), int(r * sin(theta))))

    # accumulation matrix
    acc = defaultdict(int)
    for x, y in canny_edge_detector(input_image, smoothing=smoothing):
        for r, dx, dy in points:
            a = x - dx
            b = y - dy
            acc[(a, b, r)] += 1

    # Filter circle by threshold
    circles = []
    for k, v in sorted(acc.items(), key=lambda i: -i[1]):
        x, y, r = k  # (x,y) is coordinate, v is frequency
        if v / steps >= threshold and all((x - xc) ** 2 + (y - yc) ** 2 > rc ** 2 for xc, yc, rc in
                                          circles):  # Select the circles with higher frequency and not included by other circles
            circles.append((x, y, r))

    return circles, acc
Пример #2
0
def detect_circles(input_file, output_file):
    # Load image:
    input_image_bad = Image.open(input_file)
    input_image = Image.new("RGB", input_image_bad.size)
    input_image.paste(input_image_bad)

    # Output image:
    output_image = Image.new("RGB", input_image.size)
    output_image.paste(input_image)
    draw_result = ImageDraw.Draw(output_image)

    # Find circles
    rmin = 18
    rmax = 20
    steps = 100
    threshold = 0.4

    points = []
    for r in range(rmin, rmax + 1):
        for t in range(steps):
            points.append((r, int(r * cos(2 * pi * t / steps)), int(r * sin(2 * pi * t / steps))))

    acc = defaultdict(int)
    for x, y in canny_edge_detector(input_image):
        for r, dx, dy in points:
            a = x - dx
            b = y - dy
            acc[(a, b, r)] += 1

    circles = []
    for k, v in sorted(acc.items(), key=lambda i: -i[1]):
        x, y, r = k
        if v / steps >= threshold and all((x - xc) ** 2 + (y - yc) ** 2 > rc ** 2 for xc, yc, rc in circles):
            #print(v / steps, x, y, r)
            circles.append((x, y, r))

    for x, y, r in circles:
        draw_result.ellipse((x-r, y-r, x+r, y+r), outline=(255,0,0,0))

    # Save output image
    output_image.save(output_file)
    return circles
Пример #3
0
draw_result = ImageDraw.Draw(output_image)

# Find circles
rmin = 55
rmax = 65
steps = 100
threshold = 0.235

points = []
for r in np.arange(rmin, rmax + 1, 1):
    for t in np.arange(0, steps, 1):
        points.append((r, int(r * cos(2 * pi * t / steps)),
                       int(r * sin(2 * pi * t / steps))))

acc = defaultdict(int)
for x, y in canny_edge_detector(input_image):
    for r, dx, dy in points:
        a = x - dx
        b = y - dy
        acc[(a, b, r)] += 1

circles = []
for k, v in sorted(acc.items(), key=lambda i: -i[1]):
    x, y, r = k
    if v / steps >= threshold and all(
        (x - xc)**2 + (y - yc)**2 > rc**2 for xc, yc, rc in circles):
        print(v / steps, x, y, r)
        circles.append((x, y, r))

for x, y, r in circles:
    draw_result.ellipse((x - r, y - r, x + r, y + r), outline=(255, 0, 0, 0))
Пример #4
0
# Find circles
rmin = 10  # 18
rmax = 30  # 20
steps = 50
threshold = 0.4

points = []
for r in range(rmin, rmax + 1):
    for t in range(steps):
        points.append((r, int(r * cos(2 * pi * t / steps)),
                       int(r * sin(2 * pi * t / steps))))
print('points', len(points))

acc = defaultdict(int)
lst = canny_edge_detector(input_image)
print('lst', len(lst))
for x, y in lst:
    for r, dx, dy in points:
        a = x - dx
        b = y - dy
        acc[(a, b, r)] += 1

print('f', len(acc))
circles = []
for k, v in sorted(acc.items(), key=lambda i: -i[1]):
    x, y, r = k
    if v / steps >= threshold and all(
        (x - xc)**2 + (y - yc)**2 > rc**2 for xc, yc, rc in circles):
        print(v / steps, x, y, r)
        circles.append((x, y, r))