def main(): img = extension.load_data() extension.visualize(img, 'gray') detector = ced.cannyEdgeDetector(img, sigma=1.4, kernel_size=5, lowthreshold=0.09, highthreshold=0.17, weak_pixel=100) final_img = detector.detect() extension.visualize(final_img, 'gray')
def CannyEdgeDetection(): if request.method == 'POST': data = request.get_json() # print(data) x = data["base64Image"].split(",") base64_img = x[1] size, imgs = utils.load_singleImage(base64_img) detector = ced.cannyEdgeDetector(imgs, sigma=1.4, kernel_size=5, lowthreshold=0.09, highthreshold=0.17, weak_pixel=100) imgs_final, base64_img_string = detector.detect(convertBase64=True) return_dict = { "base64Image": base64_img_string, "size": size } print("OK") # print(locations) return(json.dumps(return_dict))
def canny(input): edge_gray = rgb2gray(input) detector = ced.cannyEdgeDetector(edge_gray, sigma=1.4, kernel_size=5, lowthreshold=0.09, highthreshold=0.17, weak_pixel=100) return detector.detect()
# Script to generate doge-like ascii levels from images # https://github.com/FienSoP/canny_edge_detector from canny_edge_detector import cannyEdgeDetector from utils.utils import load_data from utils.utils import visualize # https://github.com/RameshAditya/asciify from asciify import do from PIL import Image import numpy as np img = load_data("imgs") ced = cannyEdgeDetector(img, sigma=1, kernel_size=5, weak_pixel=75, strong_pixel=255, lowthreshold=0.05, highthreshold=0.15) imgs = ced.detect() # visualize(imgs) j = 1 for i in imgs: f = open('level' + str(j) + '.txt','w') f.write( do(Image.fromarray(i)) ) f.close() j = j + 1 # convert from array to image # img_obj = Image.fromarray(imgs[3]) # imgtxt = do(img_obj)
import cv2 import canny_edge_detector as ced import numpy as np cap = cv2.VideoCapture(0) while True: ret, img = cap.read() # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # blur = cv2.GaussianBlur(gray, (5, 5), 0) # canny = cv2.Canny(blur, 10, 70) # ret, mask = cv2.threshold(canny, 70, 255, cv2.THRESH_BINARY) detector = ced.cannyEdgeDetector([img], sigma=1.4, kernel_size=5, lowthreshold=0.09, highthreshold=0.17, weak_pixel=100, useCVConvolution=True) mask = detector.detect() print(mask) mask = np.array(mask, dtype=np.uint8) cv2.imshow('Video feed', mask) if cv2.waitKey(1) == 13: break cap.release() cv2.destroyAllWindows()
import traceback import cv2, sys, os import numpy as np from matplotlib import pyplot as plt # Read image img = cv2.imread('circles.png', cv2.IMREAD_GRAYSCALE) import canny_edge_detector as ced detector = ced.cannyEdgeDetector(img, sigma=1.4, kernel_size=5, lowthreshold=0.09, highthreshold=0.17, weak_pixel=100) img = detector.detect() # cv2.imshow("canny",img) # cv2.waitKey(0) param1 = 80 param2 = 44 minRadius = 30 maxRadius = 50 radius = np.arange(minRadius, maxRadius, 1) # fi_range = [0,45,90,135,180,225,270,315] fi_range = range(0, 360, 10) H = np.zeros(img.shape + (maxRadius, )) #3D matrix