def get_next_batch_test_hzeng(batch_size=128):
    """
    # 生成一个训练batch
    :param batch_size:
    :return:
    """
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])
    rootdir = join(capt.cfg.workspace, 'test')
    file_names = []
    for parent, dirnames, filenames in os.walk(
            rootdir):  # 三个参数:分别返回1.父目录 2.所有文件夹名字(不含路径) 3.所有文件名字
        file_names = filenames

    for i in range(batch_size):
        text, image = wrap_get_captcha_text_and_image(rootdir, file_names)
        image = convert2gray(image)
        # fig, axarr = pylab.plt.subplots(2, 2)
        # axarr[0, 0].imshow(image)
        # pylab.show()
        batch_x[
            i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y
Пример #2
0
def batch_hack_captcha():
    """
    批量生成验证码,然后再批量进行识别
    :return:
    """

    # 定义预测计算图
    output = crack_captcha_cnn()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        # saver = tf.train.import_meta_graph(save_model + ".meta")
        saver.restore(sess, tf.train.latest_checkpoint(model_path))

        stime = time.time()
        task_cnt = 1000
        right_cnt = 0
        for i in range(task_cnt):
            text, image = wrap_gen_captcha_text_and_image()
            image = convert2gray(image)
            image = image.flatten() / 255
            predict_text = hack_function(sess, predict, image)
            if text == predict_text:
                right_cnt += 1
            else:
                print("标记: {}  预测: {}".format(text, predict_text))
                pass
                # print("标记: {}  预测: {}".format(text, predict_text))

        print('task:', task_cnt, ' cost time:', (time.time() - stime), 's')
        print('right/total-----', right_cnt, '/', task_cnt)
Пример #3
0
def batch_hack_captcha_save():
    """
    批量生成验证码,然后再批量进行识别
    :return:
    """

    # 定义预测计算图
    output = crack_captcha_cnn()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        # saver = tf.train.import_meta_graph(save_model + ".meta")
        saver.restore(sess, tf.train.latest_checkpoint(model_path))

        stime = time.time()
        task_cnt = 1000
        right_cnt = 0
        rootdir = join(capt.cfg.workspace, 'test')
        file_names = []
        for parent, dirnames, filenames in os.walk(
                rootdir):  # 三个参数:分别返回1.父目录 2.所有文件夹名字(不含路径) 3.所有文件名字
            file_names = filenames
        for file_name in filenames:
            print(file_name)
            file_name, image = get_captcha_text_and_image2(rootdir, file_name)
            image = convert2gray(image)
            image = image.flatten() / 255
            predict_text = hack_function(sess, predict, image)
            file_name2 = '__' + predict_text + '__' + file_name
            os.rename(join(rootdir, file_name), join(rootdir, file_name2))
def predict_captcha(image):
    image = Image.open(image)
    image = np.array(image)
    image = convert2gray(image)
    image = image.flatten() / 255

    output = crack_captcha_cnn()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        # restore only once
        saver.restore(sess, tf.train.latest_checkpoint(model_path))
        text = hack_function(sess, predict, image)
        return text
Пример #5
0
def hack_captcha(captcha_image):
    # 定义预测计算图
    output = crack_captcha_cnn()

    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    saver = tf.train.Saver()
    predict_text = "error"
    with tf.Session() as sess:
        # saver = tf.train.import_meta_graph(save_model + ".meta")
        saver.restore(sess, tf.train.latest_checkpoint(model_path))
        stime = time.time()
        image = convert2gray(captcha_image)
        image = image.flatten() / 255
        predict_text = hack_function(sess, predict, image)
    return predict_text
Пример #6
0
def get_next_batch(batch_size=128):
    """
    # 生成一个训练batch
    :param batch_size:
    :return:
    """
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image()
        image = convert2gray(image)

        batch_x[
            i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y
def get_next_batch(batch_size=128):
    """
    # 生成一个训练batch
    :param batch_size:
    :return:
    """
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image()
        image = convert2gray(image)
        text = text.upper()
        batch_x[
            i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
        try:
            batch_y[i, :] = text2vec(text)
        except IndexError as e:
            i -= 1
            print("IndexError:%s", text)
            continue

    return batch_x, batch_y
Пример #8
0
def batch_hack_captcha():
    """
    批量生成验证码,然后再批量进行识别
    :return:
    """

    # 定义预测计算图
    output = crack_captcha_cnn()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        # saver = tf.train.import_meta_graph(save_model + ".meta")
        saver.restore(sess, tf.train.latest_checkpoint(model_path))

        stime = time.time()
        task_cnt = 1000
        right_cnt = 0
        rootdir = join(capt.cfg.workspace, 'test')
        file_names = []
        for parent, dirnames, filenames in os.walk(
                rootdir):  # 三个参数:分别返回1.父目录 2.所有文件夹名字(不含路径) 3.所有文件名字
            file_names = filenames
        for i in range(task_cnt):
            text, image = get_captcha_text_and_image(rootdir, file_names)
            image = convert2gray(image)
            image = image.flatten() / 255
            predict_text = hack_function(sess, predict, image)
            if text == predict_text:
                right_cnt += 1
            else:
                print("标记: {}  预测: {}".format(text, predict_text))
                pass
                # print("标记: {}  预测: {}".format(text, predict_text))

        print('task:', task_cnt, ' cost time:', (time.time() - stime), 's')
        print('right/total-----', right_cnt, '/', task_cnt)
def batch_hack_captcha():
    """
    批量生成验证码,然后再批量进行识别
    :return:
    """

    # 定义预测计算图
    output = crack_captcha_cnn()
    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        # saver = tf.train.import_meta_graph(save_model + ".meta")
        # https://github.com/jikexueyuanwiki/tensorflow-zh/blob/master/SOURCE/api_docs/python/state_ops.md#latest_checkpoint
        saver.restore(sess, tf.train.latest_checkpoint(model_path))

        stime = time.time()
        task_cnt = 1000
        right_cnt = 0

        for i in range(task_cnt):
            text, image = wrap_gen_captcha_text_and_image()
            text = text.upper()
            image = convert2gray(image)
            image = image.flatten() / 255
            predict_text = hack_function(sess, predict, image)
            if text == predict_text:
                right_cnt += 1
                print("正确预测:标记: {}  预测: {}".format(text, predict_text))
            else:
                print("错误预测:标记: {}  预测: {}".format(text, predict_text))
                pass
                # print("标记: {}  预测: {}".format(text, predict_text))
        print('task:', task_cnt, ' cost time:', (time.time() - stime), 's')
        print('right/total-----', right_cnt, '/', task_cnt)
    pass
 def hack_capt(self, image):
     image = Image.open(image)
     image = np.array(image)
     image = convert2gray(image)
     image = image.flatten() / 255
     return hack_function(self.sess, self.predict, image)
def hack_captcha(captcha_image):
    w_alpha = 0.01
    b_alpha = 0.1
    with tf.Graph().as_default() as g:
        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
        keep_prob = tf.placeholder(tf.float32)  # dropout
        """
            定义CNN
            cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
            np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))  # 在图像上补2行,下补3行,左补2行,右补2行
            """

        x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

        # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
        # w_c2_alpha = np.sqrt(2.0/(3*3*32))
        # w_c3_alpha = np.sqrt(2.0/(3*3*64))
        # w_d1_alpha = np.sqrt(2.0/(8*32*64))
        # out_alpha = np.sqrt(2.0/1024)

        # 3 conv layer
        w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
        b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
        conv1 = tf.nn.relu(
            tf.nn.bias_add(
                tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'),
                b_c1))
        conv1 = tf.nn.max_pool(conv1,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME')
        conv1 = tf.nn.dropout(conv1, keep_prob)

        w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
        b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv2 = tf.nn.relu(
            tf.nn.bias_add(
                tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1],
                             padding='SAME'), b_c2))
        conv2 = tf.nn.max_pool(conv2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME')
        conv2 = tf.nn.dropout(conv2, keep_prob)

        w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
        b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv3 = tf.nn.relu(
            tf.nn.bias_add(
                tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1],
                             padding='SAME'), b_c3))
        conv3 = tf.nn.max_pool(conv3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME')
        conv3 = tf.nn.dropout(conv3, keep_prob)

        # Fully connected layer
        w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
        b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
        dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
        dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
        dense = tf.nn.dropout(dense, keep_prob)

        w_out = tf.Variable(
            w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
        b_out = tf.Variable(b_alpha *
                            tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
        output = tf.add(tf.matmul(dense, w_out), b_out)  # 36*4
        predict_text = "error"
        #output=crack_captcha_cnn()
        with g.name_scope(
                "myscope"
        ) as scope:  # 有了这个scope,下面的op的name都是类似myscope/Placeholder这样的前缀
            sess = tf.Session(target='', graph=g,
                              config=None)  # target表示要连接的tf执行引擎
            predict = tf.argmax(
                tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
            saver = tf.train.Saver()
            predict_text = "error"
            with tf.Session() as sess:
                saver.restore(sess, tf.train.latest_checkpoint(model_path))
                stime = time.time()
                image = convert2gray(captcha_image)
                image = image.flatten() / 255
                text_list = sess.run(predict,
                                     feed_dict={
                                         X: [image],
                                         keep_prob: 1
                                     })

                text = text_list[0].tolist()
                vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
                i = 0
                for n in text:
                    vector[i * CHAR_SET_LEN + n] = 1
                    i += 1
                predict_text = vec2text(vector)
            return predict_text