Пример #1
0
def hack_function(sess, predict, captcha_image):
    """
    after the contents which used for recognition are loaded
    :param sess:
    :param predict:
    :param captcha_image:
    :return:
    """
    text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

    text = text_list[0].tolist()
    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
    i = 0
    for n in text:
        vector[i * CHAR_SET_LEN + n] = 1
        i += 1
    return vec2text(vector)
def hack_function(sess, predict, captcha_image):
    """
    装载完成识别内容后,
    :param sess:
    :param predict:
    :param captcha_image:
    :return:
    """
    text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

    text = text_list[0].tolist()
    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
    i = 0
    for n in text:
        vector[i * CHAR_SET_LEN + n] = 1
        i += 1
    return vec2text(vector)
def hack_captcha(captcha_image):
    w_alpha = 0.01
    b_alpha = 0.1
    with tf.Graph().as_default() as g:
        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
        keep_prob = tf.placeholder(tf.float32)  # dropout
        """
            定义CNN
            cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
            np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))  # 在图像上补2行,下补3行,左补2行,右补2行
            """

        x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

        # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
        # w_c2_alpha = np.sqrt(2.0/(3*3*32))
        # w_c3_alpha = np.sqrt(2.0/(3*3*64))
        # w_d1_alpha = np.sqrt(2.0/(8*32*64))
        # out_alpha = np.sqrt(2.0/1024)

        # 3 conv layer
        w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
        b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
        conv1 = tf.nn.relu(
            tf.nn.bias_add(
                tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'),
                b_c1))
        conv1 = tf.nn.max_pool(conv1,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME')
        conv1 = tf.nn.dropout(conv1, keep_prob)

        w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
        b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv2 = tf.nn.relu(
            tf.nn.bias_add(
                tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1],
                             padding='SAME'), b_c2))
        conv2 = tf.nn.max_pool(conv2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME')
        conv2 = tf.nn.dropout(conv2, keep_prob)

        w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
        b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv3 = tf.nn.relu(
            tf.nn.bias_add(
                tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1],
                             padding='SAME'), b_c3))
        conv3 = tf.nn.max_pool(conv3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding='SAME')
        conv3 = tf.nn.dropout(conv3, keep_prob)

        # Fully connected layer
        w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
        b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
        dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
        dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
        dense = tf.nn.dropout(dense, keep_prob)

        w_out = tf.Variable(
            w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
        b_out = tf.Variable(b_alpha *
                            tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
        output = tf.add(tf.matmul(dense, w_out), b_out)  # 36*4
        predict_text = "error"
        #output=crack_captcha_cnn()
        with g.name_scope(
                "myscope"
        ) as scope:  # 有了这个scope,下面的op的name都是类似myscope/Placeholder这样的前缀
            sess = tf.Session(target='', graph=g,
                              config=None)  # target表示要连接的tf执行引擎
            predict = tf.argmax(
                tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
            saver = tf.train.Saver()
            predict_text = "error"
            with tf.Session() as sess:
                saver.restore(sess, tf.train.latest_checkpoint(model_path))
                stime = time.time()
                image = convert2gray(captcha_image)
                image = image.flatten() / 255
                text_list = sess.run(predict,
                                     feed_dict={
                                         X: [image],
                                         keep_prob: 1
                                     })

                text = text_list[0].tolist()
                vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
                i = 0
                for n in text:
                    vector[i * CHAR_SET_LEN + n] = 1
                    i += 1
                predict_text = vec2text(vector)
            return predict_text