Пример #1
0
 def test_lrp_simple_attributions_AlphaBeta(self) -> None:
     model, inputs = _get_simple_model()
     with torch.no_grad():
         model.linear.weight.data[0][0] = -2  # type: ignore
     model.eval()
     model.linear.rule = Alpha1_Beta0_Rule()  # type: ignore
     model.linear2.rule = Alpha1_Beta0_Rule()  # type: ignore
     lrp = LRP(model)
     relevance = lrp.attribute(inputs)
     assertTensorAlmostEqual(self, relevance,
                             torch.tensor([[12, 33.6, 50.4]]))
Пример #2
0
 def test_lrp_simple_attributions_AlphaBeta(self):
     model, inputs = _get_simple_model()
     with torch.no_grad():
         model.linear.weight.data[0][0] = -2
     model.eval()
     model.linear.rule = Alpha1_Beta0_Rule()
     model.linear2.rule = Alpha1_Beta0_Rule()
     lrp = LayerLRP(model, model.linear)
     relevance = lrp.attribute(inputs)
     assertTensorAlmostEqual(self, relevance[0],
                             torch.tensor([24.0, 36.0, 36.0]))
Пример #3
0
 def test_lrp_simple_repeat_attributions(self) -> None:
     model, inputs = _get_simple_model()
     model.eval()
     model.linear.rule = GammaRule()  # type: ignore
     model.linear2.rule = Alpha1_Beta0_Rule()  # type: ignore
     output = model(inputs)
     lrp = LRP(model)
     _ = lrp.attribute(inputs)
     output_after = model(inputs)
     assertTensorAlmostEqual(self, output, output_after)