def __init__(self, checkpoint): #experiment_name='None', driver_conf=None, memory_fraction=0.18, #image_cut=[115, 510]): # use_planner=False,graph_file=None,map_file=None,augment_left_right=False,image_cut = [170,518]): Agent.__init__(self) # This should likely come from global #config_gpu = tf.ConfigProto() #config_gpu.gpu_options.visible_device_list = '0' #config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction #self._sess = tf.Session(config=config_gpu) # THIS DOES NOT WORK FOR FUSED PLUS LSTM #if self._config.number_frames_sequenced > self._config.number_frames_fused: # self._config_train.batch_size = self._config.number_frames_sequenced #else: # self._config_train.batch_size = self._config.number_frames_fused #self._train_manager = load_system(self._config_train) #self._config.train_segmentation = False self.model = CoILModel(g_conf.MODEL_NAME) self.model.load_state_dict(checkpoint['state_dict']) self.model.cuda() self.model.eval()
def __init__(self, city_name): self.timer = Timer() # Map setup self._map = CarlaMap(city_name) self._centerlines = Centerlines(city_name) # Agent Setup Agent.__init__(self) self._neural_net = CAL_network() self._seq_len = 5 #self._neural_net.model.max_input_shape self._state = VehicleState() self._agents_present = False # Controller setup param_path = os.path.dirname(__file__) + '/controller/params/' cruise_params = get_params_from_txt(param_path + 'cruise_params.txt') self._PID_cruise = PID(*cruise_params) follow_params = get_params_from_txt(param_path + 'follow_params.txt') self._PID_follow = PID(*follow_params) # General Parameter setup general_params = get_params_from_txt(param_path + 'general_params.txt') self.c, self.d = general_params[0], general_params[1] self.Kl_STANLEY = general_params[2] self.Kr_STANLEY = general_params[3] self.K0_STANLEY = general_params[4] self.curve_slowdown = general_params[5] self.DELTAl = general_params[6] self.DELTAr = general_params[7] self.DELTA0 = general_params[8] self.EXP_DECAY = general_params[9]
def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) scopeName = 'NET' scopeName1 = 'First' scopeName2 = 'Second' self.dropout_vec = [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [ 0.5, 1. ] * 2 config_gpu = tf.ConfigProto() # GPU to be selected, just take zero , select GPU with CUDA_VISIBLE_DEVICES config_gpu.gpu_options.visible_device_list = '0' config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping self._sess = tf.Session(config=config_gpu) with tf.device('/gpu:0'): self._input_images = tf.placeholder("float", shape=[ None, self._image_size[0], self._image_size[1], self._image_size[2] ], name="input_image") self._input_data = tf.placeholder(tf.float32, shape=[None, 1], name="input_speed") self._dout = tf.placeholder("float", shape=[len(self.dropout_vec)]) with tf.variable_scope(scopeName) as scope: self._network_tensor = load_imitation_learning_network( self._input_images, self._input_data, self._image_size, self._dout, scopeName1, scopeName2) import os dir_path = os.path.dirname(__file__) self._models_path = dir_path + '/model/test/' # tf.reset_default_graph() self._sess.run(tf.global_variables_initializer()) self.load_model() self._image_cut = image_cut
def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) self.dropout_vec = [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [ 0.5, 1. ] * 5 config_gpu = tf.ConfigProto() # GPU to be selected, just take zero , select GPU with CUDA_VISIBLE_DEVICES # config_gpu.gpu_options.visible_device_list = '0' # config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping self._sess = tf.Session(config=config_gpu) with tf.device('/cpu:0'): self._input_images = tf.placeholder("float", shape=[ None, self._image_size[0], self._image_size[1], self._image_size[2] ], name="input_image") self._input_data = [] self._input_data.append( tf.placeholder(tf.float32, shape=[None, 3], name="target_control")) self._input_data.append( tf.placeholder(tf.float32, shape=[None, 1], name="input_speed")) self._dout = tf.placeholder("float", shape=[len(self.dropout_vec)]) # with tf.name_scope("Network"): # self._network_tensor = make_network() self._network_tensor = make_network() dir_path = os.path.dirname(__file__) self._models_path = dir_path + '/data_fine_tune/' # tf.reset_default_graph() self._sess.run(tf.global_variables_initializer()) self.load_model() self._image_cut = image_cut
def __init__(self, checkpoint): Agent.__init__(self) self.checkpoint = checkpoint # We save the checkpoint for some interesting future use. self.model = CoILModel(g_conf.MODEL_NAME) self.model.load_state_dict(checkpoint['state_dict']) self.model.cuda()
def __init__(self, checkpoint, architecture_name): #experiment_name='None', driver_conf=None, memory_fraction=0.18, #image_cut=[115, 510]): # use_planner=False,graph_file=None,map_file=None,augment_left_right=False,image_cut = [170,518]): Agent.__init__(self) # This should likely come from global #config_gpu = tf.ConfigProto() #config_gpu.gpu_options.visible_device_list = '0' #config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction #self._sess = tf.Session(config=config_gpu) # THIS DOES NOT WORK FOR FUSED PLUS LSTM #if self._config.number_frames_sequenced > self._config.number_frames_fused: # self._config_train.batch_size = self._config.number_frames_sequenced #else: # self._config_train.batch_size = self._config.number_frames_fused #self._train_manager = load_system(self._config_train) #self._config.train_segmentation = False self.architecture_name = architecture_name if architecture_name == 'coil_unit': self.model_task, self.model_gen = CoILModel('coil_unit') self.model_task, self.model_gen = self.model_task.cuda( ), self.model_gen.cuda() elif architecture_name == 'unit_task_only': self.model_task, self.model_gen = CoILModel('unit_task_only') self.model_task, self.model_gen = self.model_task.cuda( ), self.model_gen.cuda() else: self.model = CoILModel(architecture_name) self.model.cuda() if architecture_name == 'wgangp_lsd': # print(ckpt, checkpoint['best_loss_iter_F']) self.model.load_state_dict(checkpoint['stateF_dict']) self.model.eval() elif architecture_name == 'coil_unit': self.model_task.load_state_dict(checkpoint['task']) self.model_gen.load_state_dict(checkpoint['b']) self.model_task.eval() self.model_gen.eval() elif architecture_name == 'coil_icra': self.model.load_state_dict(checkpoint['state_dict']) self.model.eval() elif architecture_name == 'unit_task_only': self.model_task.load_state_dict(checkpoint['task_state_dict']) self.model_gen.load_state_dict(checkpoint['enc_state_dict']) self.model_task.eval() self.model_gen.eval()
def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping # Reading models and weights dir_path = 'E:\GP\org data less' self._model_path = dir_path + '/BH1_Nvidia.h5' self._weights_path = dir_path + '/BH1_Nividia_at_epoch_40.h5' self._image_cut = image_cut self.model = keras.models.load_model(self._model_path, custom_objects={'masked_loss_function': masked_loss_function}) self.model.load_weights(self._weights_path)
def __init__(self, city_name, args_file='', model_file='', n_actions=0, frameskip=1): Agent.__init__(self) self.args = self.read_args(args_file) self.args.model = model_file self.n_actions = n_actions self.n_meas = self.compute_n_meas(self.args) self.args.town_traintest = city_name self.setup_model(self.n_actions, self.n_meas, self.args) self.setup_data_preprocessor(self.args) self.frameskip = frameskip self.step = 0
def __init__(self, city_name, mode, num_control, path=None, image_cut=[115, 510], gpu_fraction=0.75): Agent.__init__(self) # set keras session config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True config_gpu.gpu_options.per_process_gpu_memory_fraction = gpu_fraction KTF.set_session(tf.Session(config=config_gpu)) self.model = None self.mode = mode self.num_control = num_control self.path = path self._image_cut = image_cut self.init()
def __init__(self, city_name, avoid_stopping, memory_fraction=0.25, image_cut=[115, 510]): Agent.__init__(self) self.images = list([]) self.imagenum = 0 self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping self.network = make_network() self._sess = tf.Session(config=tf.ConfigProto( log_device_placement=False)) self._sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(write_version=saver_pb2.SaverDef.V2) saver.restore(self._sess, './agents/imitation/mymodel/epoch-149.ckpt') print('hellohellohellohellohellohello') self._image_cut = image_cut
def __init__(self, city_name, task, intersection, save_choice, avoid_stopping, min_frames, max_frames, trajectory_no, memory_fraction=0.25, image_cut=[115, 510], opt=0): Agent.__init__(self) self.opt = opt self.save_choice = save_choice self.intersection = intersection task = task self.trajectory_no = trajectory_no self.dataset_pt = "datasets_" + str( self.trajectory_no) + "/" + task + "/" + self.intersection + "/" self.clean_frame_pt = self.dataset_pt + "clean_frame/" self.input_pt = self.dataset_pt + "inputInfo/" self.images_save_path = "out_" + self.intersection + "_" + str( self.trajectory_no) + "/" self.steer_pt = self.dataset_pt + "steer/" self.steer_deviation_clean_pt = self.dataset_pt + "steer_deviation_cleanFrame/" self.steer_pt_input = self.dataset_pt + "steer_input/" self.control_info_pt = self.dataset_pt + "control_input/" self.frame_count = 0 self.min_frames = min_frames self.max_frames = max_frames if not os.path.exists(self.dataset_pt): os.mkdir(self.dataset_pt) if not os.path.exists(self.input_pt): os.mkdir(self.input_pt) if not os.path.exists(self.steer_pt): os.mkdir(self.steer_pt) if not os.path.exists(self.steer_deviation_clean_pt): os.mkdir(self.steer_deviation_clean_pt) self.dropout_vec = [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [ 0.5, 1. ] * 5 config_gpu = tf.ConfigProto() # GPU to be selected, just take zero , select GPU with CUDA_VISIBLE_DEVICES config_gpu.gpu_options.visible_device_list = '0' config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping """ loading adversary """ self.city_name = city_name self._sess = tf.Session(config=config_gpu) with tf.device('/cpu:0'): self._input_images = tf.placeholder("float", shape=[ None, self._image_size[0], self._image_size[1], self._image_size[2] ], name="input_image") self._input_data = [] self.start = True self.frame_count = 0 self._input_data.append( tf.placeholder(tf.float32, shape=[None, 4], name="input_control")) self._input_data.append( tf.placeholder(tf.float32, shape=[None, 1], name="input_speed")) self._dout = tf.placeholder("float", shape=[len(self.dropout_vec)]) with tf.name_scope("Network"): self._network_tensor, self.gradients_steers, self.gradients_acc, self.gradients_brake = load_imitation_learning_network( self._input_images, self._input_data, self._image_size, self._dout) dir_path = os.path.dirname(__file__) self._models_path = dir_path + '/model/' # tf.reset_default_graph() self._sess.run(tf.global_variables_initializer()) self.load_model() self._image_cut = image_cut
def __init__(self, city_name, avoid_stopping, gpu_num=0, memory_fraction=0.25, image_cut=[115, 510]): """ Source: https://github.com/carla-simulator/imitation-learning """ Agent.__init__(self) self._image_size = (88, 200, 3) self._avoid_stopping = avoid_stopping self.dropout_vec = [1.0] * 8 + [0.7] * 2 + [0.5] * 2 + [0.5] * 1 + [ 0.5, 1. ] * 5 config_gpu = tf.ConfigProto() #print(tf.test.is_gpu_available()) #g = input() #if tf.test.is_gpu_available(): # tf_device = '/gpu:' + str(gpu_num) # # GPU to be selected, just take zero , select GPU with CUDA_VISIBLE_DEVICES # config_gpu.gpu_options.visible_device_list = '0' # config_gpu.gpu_options.visible_device_list = str(gpu_num) #else: # tf_device = '/cpu:0' tf_device = '/cpu:0' config_gpu.gpu_options.visible_device_list = '0' config_gpu.gpu_options.per_process_gpu_memory_fraction = memory_fraction self._sess = tf.Session(config=config_gpu) with tf.device(tf_device): self._input_images = tf.placeholder("float", shape=[ None, self._image_size[0], self._image_size[1], self._image_size[2] ], name="input_image") self._input_data = [] self._input_data.append( tf.placeholder(tf.float32, shape=[None, 4], name="input_control")) self._input_data.append( tf.placeholder(tf.float32, shape=[None, 1], name="input_speed")) self._dout = tf.placeholder("float", shape=[len(self.dropout_vec)]) with tf.name_scope("Network"): self._network_tensor = load_imitation_learning_network( self._input_images, self._input_data, self._image_size, self._dout) import os dir_path = os.path.dirname(__file__) self._models_path = dir_path + '/model/' # tf.reset_default_graph() self._sess.run(tf.global_variables_initializer()) self.load_model() self._image_cut = image_cut