Пример #1
0
def control_callback(msg):   
    data = CarlaEgoVehicleControl()
    data.throttle = msg.velocity
    data.steer = msg.angle
    data.brake = 0
    data.gear = 1
    data.reverse = False
    data.manual_gear_shift = True
    pub.publish(data)
    vehicle_control_manual_override_publisher.publish(vehicle_control_manual_override)
    auto_pilot_enable_publisher.publish(autopilot_enabled)
    def Control(self):
        rate = rospy.Rate(10)
        lon_param = {
            'K_P': 0.5,
            'K_I': 0.5,
            'K_D': 0
        }  # Set PID values for longitudinal controller
        lat_param = {
            'K_P': 0.5,
            'K_I': 0.3,
            'K_D': 0
        }  # Set PID values for lateral controller
        vehicle_controller = VehiclePIDController(
            self.vehicle, lon_param,
            lat_param)  # Calling vehicle controller class from controller.py

        i = 0
        for k in range(1, len(self.current_route)
                       ):  # Iterate through all the waypoints in the route
            self.Distance(self.current_route[i][0], self.veh_pos.transform)
            self.Waypoints()
            rospy.Subscriber(
                '/machine_learning/output', Int16, self.Detection
            )  # Subscribes to topic for Stop sign detection. Need to run carla_detect_objects.py script to obtain detection
            while self.distance > 0.5:  # Control the vehicle until the distance of the next waypoint and the vehicle is less than 0.5 m
                self.Actor(
                )  # Call Actor function to update vehicle's location
                control = vehicle_controller.run_step(
                    15, self.current_route[i]
                    [0])  # Feeds the controller the waypoints one by one
                self.velocity = self.vehicle.get_velocity(
                )  # Get vehicle velocity

                if self.detection == 11:  # Stop sign detection(apply brakes). Our ML has a class ID of 11 for stop signs
                    print('Object detected, apply brakes')
                    msg = CarlaEgoVehicleControl(
                    )  # Ego vehicle's control message
                    msg.throttle = 0
                    msg.steer = control.steer
                    msg.brake = 1
                    msg.hand_brake = control.hand_brake
                    msg.reverse = control.reverse
                    msg.gear = 1
                    msg.manual_gear_shift = control.manual_gear_shift
                    self.detection = None

                elif len(self.current_route) - 5 <= k <= len(
                        self.current_route
                ):  # If the ith waypoint is between the last waypoint minus five apply brakes
                    msg = CarlaEgoVehicleControl()
                    msg.throttle = 0
                    msg.steer = control.steer
                    msg.brake = 1
                    msg.hand_brake = control.hand_brake
                    msg.reverse = control.reverse
                    msg.gear = 1
                    msg.manual_gear_shift = control.manual_gear_shift
                    print('You arrived to your destination!!')

                else:  # If neither scenario happen, keep driving
                    msg = CarlaEgoVehicleControl()
                    msg.throttle = control.throttle
                    msg.steer = control.steer
                    msg.brake = control.brake
                    msg.hand_brake = control.hand_brake
                    msg.reverse = control.reverse
                    msg.gear = 1
                    msg.manual_gear_shift = control.manual_gear_shift

                self.Publisher(msg)
                rate.sleep()
                self.Distance(
                    self.current_route[i][0], self.veh_pos.transform
                )  # Calculates the Euclidean distance between the vehicle and the next waypoint in every iteration
            i += 1
Пример #3
0
def main():
    """
    main function
    """
    role_name = rospy.get_param("~role_name", "ego_vehicle")
    code_control = CarlaEgoVehicleControl()
    vehicle_control_publisher = rospy.Publisher(
        "/carla/{}/vehicle_control_cmd_manual".format(role_name),
        CarlaEgoVehicleControl,
        queue_size=1)
    rospy.init_node('carla_manual_control', anonymous=True)

    # resolution should be similar to spawned camera with role-name 'view'
    view_subscriber = rospy.Subscriber(
        "/carla/{}/camera/rgb/view/image_color".format(role_name), Image,
        on_view_view_image)
    top_subscriber = rospy.Subscriber(
        "/carla/{}/camera/rgb/top/image_color".format(role_name), Image,
        on_view_top_image)

    throttle_pub = rospy.Publisher('acceleratorServo', Float32, queue_size=1)
    break_pub = rospy.Publisher('breakServo', Float32, queue_size=1)
    steer_pub = rospy.Publisher('steeringServo', Float32, queue_size=1)

    resolution = {"width": 1920, "height": 1080}

    pygame.init()
    pygame.font.init()
    pygame.display.set_caption("CARLA ROS manual control")
    world = None

    skip_first_frame = True
    prev_timestamp = 0
    tot_target_reached = 0
    num_min_waypoints = 21
    try:

        start_timestamp = 0

        display = pygame.display.set_mode(
            (resolution['width'], resolution['height']),
            pygame.HWSURFACE | pygame.DOUBLEBUF)
        hud = HUD(role_name, resolution['width'], resolution['height'])
        world = World(role_name, hud)
        controllerK = KeyboardControl(role_name, hud)
        clock = pygame.time.Clock()

        waypoints_file = WAYPOINTS_FILENAME

        waypoints_filepath =\
                os.path.join(os.path.dirname(os.path.realpath(__file__)),
                                                WAYPOINTS_FILENAME)
        waypoints_np = None
        with open(waypoints_filepath) as waypoints_file_handle:
            waypoints = list(
                csv.reader(waypoints_file_handle,
                           delimiter=',',
                           quoting=csv.QUOTE_NONNUMERIC))
            waypoints_np = np.array(waypoints)

        wp_goal_index = 0
        local_waypoints = None
        path_validity = np.zeros((NUM_PATHS, 1), dtype=bool)
        controller = resources.controller2d.Controller2D(waypoints)
        bp = resources.behavioural_planner.BehaviouralPlanner(
            BP_LOOKAHEAD_BASE)
        lp = resources.local_planner.LocalPlanner(NUM_PATHS, PATH_OFFSET,
                                                  CIRCLE_OFFSETS, CIRCLE_RADII,
                                                  PATH_SELECT_WEIGHT, TIME_GAP,
                                                  A_MAX, SLOW_SPEED,
                                                  STOP_LINE_BUFFER)

        clock = pygame.time.Clock()
        frame = 0
        current_timestamp = start_timestamp
        reached_the_end = False

        tx = 0
        ty = 2.0
        tz = 2.0

        CameraFOV = 100
        Cu = 1920 / 2
        Cv = 1080 / 2
        f = 1920 / (2 * np.tan(CameraFOV * np.pi / 360))
        K = [[f, 0, Cu], [0, f, Cv], [0, 0, 1]]
        K_np = np.asmatrix(K)
        t = [[1, 0, 0, tx], [0, 1, 0, ty], [0, 0, 1, tz]]

        t_np = np.asmatrix(t)
        while not rospy.core.is_shutdown():
            vehicle_control_publisher.publish(code_control)
            frame = frame + 1

            clock.tick_busy_loop(60)
            if controllerK.parse_events(clock):
                return
            hud.tick(clock)
            world.render(display)
            pygame.display.flip()

            ##transform = world.role_name.get_transform()
            ##vel = world.role_name.get_velocity()
            prev_timestamp = current_timestamp
            current_timestamp = rospy.get_time()

            ##control = world.role_name.get_control()
            try:
                tf_listener = hud.tf_listener
                (position, quaternion) = tf_listener.lookupTransform(
                    '/map', role_name, rospy.Time())

                _, _, yaw = tf.transformations.euler_from_quaternion(
                    quaternion)

                yaw = -math.degrees(yaw)
                x = position[0]
                y = -position[1]

            except (tf.LookupException, tf.ConnectivityException,
                    tf.ExtrapolationException):
                x = 0
                y = 0
                z = 0
                yaw = 0

            current_x = x
            current_y = y
            current_yaw = np.radians(yaw)
            velocity = hud.vehicle_status.velocity
            current_speed = velocity
            open_loop_speed = lp._velocity_planner.get_open_loop_speed(
                current_timestamp - prev_timestamp)
            #open_loop_speed = lp._velocity_planner.get_open_loop_speed(current_timestamp - prev_timestamp)

            if frame % 5 == 0:
                # try:
                #    cv2.imshow("view_image",view_bgr_image)
                #   cv2.imshow("top image",top_bgr_image)
                #  #cv2.imshow("top image",top_bgr_image)
                #
                #cv2.waitKey(1)

                #except Exception as e:
                #      print(e)

                #Lane detection

                ego_state = [
                    current_x + 2, current_y, current_yaw, open_loop_speed
                ]
                print(ego_state)
                bp.set_lookahead(BP_LOOKAHEAD_BASE +
                                 BP_LOOKAHEAD_TIME * open_loop_speed)

                bp.transition_state(waypoints, waypoints, ego_state,
                                    current_speed)

                goal_state_set = lp.get_goal_state_set(bp._goal_index,
                                                       bp._goal_state,
                                                       waypoints, ego_state)
                #print("goal_state_set",goal_state_set)
                paths_vehicle_coordinate, path_validity = lp.plan_paths(
                    goal_state_set)

                # print("Paths_local",paths_vehicle_coordinate)
                paths = resources.local_planner.transform_paths(
                    paths_vehicle_coordinate, ego_state)

                #print("Paths_global",paths)
                best_index = lp._collision_checker.select_best_path_index(
                    paths, bp._goal_state_hyp)

                ################################################ Compute paths visualize#####################
                #Whole Code
                #             try:
                #
                #                   paths_vehicle_coordinate_np = np.array(paths_vehicle_coordinate)
                #
                #                   Each_Path_length = len(paths_vehicle_coordinate_np[0][0])
                #
                #                   pixel_coordinate_paths = []
                #
                #  for x in range(0,NUM_PATHS):
                #       for i in range(0,Each_Path_length):
                #            world_coordinate = [paths_vehicle_coordinate_np[x][1][i],1,paths_vehicle_coordinate_np[x][0][i],1]
                #             world_coordinate_np = np.asmatrix(world_coordinate)
                #              camera_coordinates = np.dot(np.dot(K_np,t),world_coordinate_np.T)
                #               pixel_coordinates = [[camera_coordinates[0] / camera_coordinates[2]],
                #                                [camera_coordinates[1] / camera_coordinates[2]]
                #                                 ]
                #                  pixel_coordinate_paths.append(pixel_coordinates)
                #           pixel_coordinate_paths_np = np.array(pixel_coordinate_paths)
                #            pixel_plot = pixel_coordinate_paths_np[:,:,0, 0, 0]
                #             pix_1 = pixel_plot[0:49]
                #              pix_2 = pixel_plot[49:98]
                #               pix_3 = pixel_plot[98:147]
                #                pix_4 = pixel_plot[147:196]
                #                 pix_5 = pixel_plot[196:245]
                #                  pix_6 = pixel_plot[245:294]
                #                   pix_7 = pixel_plot[294:343]
                #
                #               line_1 = np.array((pix_1.T[0],pix_1.T[1]))
                #                line_1 = pix_1.astype(int)
                #                 line_1 = line_1.reshape((-1,1,2))
                #
                #                  line_2 = pix_2.astype(int)
                #                   line_2 = line_2.reshape((-1,1,2))
                #
                #                   line_3 = pix_3.astype(int)
                #                    line_3 = line_3.reshape((-1,1,2))

                #line_4 = pix_4.astype(int)
                #line_4 = line_4.reshape((-1,1,2))

                #line_5 = pix_5.astype(int)
                #line_5 = line_5.reshape((-1,1,2))

                #line_6 = pix_6.astype(int)
                #line_6 = line_6.reshape((-1,1,2))

                #line_7 = pix_7.astype(int)
                # line_7 = line_7.reshape((-1,1,2))
                #  on_view_image_global_np = np.array(on_view_image_global)
                #   view_bgr_image_np = np.array(on_view_image_global)
                #    line_array = [line_1,line_2,line_3,line_4,line_5,line_6,line_7]
                #     print(line_array)
                #      print("works 1")
                #       image = cv2.polylines(on_view_image_global_np,[line_1,line_2,line_3,line_4,line_5,line_6,line_7],
                #                            isClosed=False,
                #                             color=(255, 255, 255),
                #                              thickness=10,
                #                               lineType=cv2.LINE_AA)
                #            print("Works here")
                #             image = cv2.polylines(image,[line_array[best_index]],
                #                                  isClosed=False,
                #                                   color=(0, 255, 0),
                #                                    thickness=10,
                #                                     lineType=cv2.LINE_AA)
                #                  cv2.imshow("front image",image[:,:,::-1])
                #                   cv2.waitKey(1)
                #
                #except Exception as e:
                #    print(e)

                try:
                    if best_index == None:
                        best_path = lp._prev_best_path
                    else:
                        best_path = paths[best_index]
                        lp._prev_best_path = best_path
                except:
                    continue

                desired_speed = bp._goal_state[2]
                decelerate_to_stop = False
                print("Desired_speed", desired_speed)
                print("Current_speed", current_speed)
                local_waypoints = lp._velocity_planner.compute_velocity_profile(
                    best_path, desired_speed, ego_state, current_speed)
                print("local_waypoints", local_waypoints)
                if local_waypoints != None:

                    wp_distance = []  # distance array
                    local_waypoints_np = np.array(local_waypoints)
                    for i in range(1, local_waypoints_np.shape[0]):
                        wp_distance.append(
                            np.sqrt((local_waypoints_np[i, 0] -
                                     local_waypoints_np[i - 1, 0])**2 +
                                    (local_waypoints_np[i, 1] -
                                     local_waypoints_np[i - 1, 1])**2))
                    wp_distance.append(0)

                    wp_interp = []

                    for i in range(local_waypoints_np.shape[0] - 1):

                        wp_interp.append(list(local_waypoints_np[i]))

                        num_pts_to_interp = int(np.floor(wp_distance[i] /\
                                                     float(INTERP_DISTANCE_RES)) - 1)
                        wp_vector = local_waypoints_np[
                            i + 1] - local_waypoints_np[i]
                        wp_uvector = wp_vector / np.linalg.norm(wp_vector[0:2])

                        for j in range(num_pts_to_interp):
                            next_wp_vector = INTERP_DISTANCE_RES * float(
                                j + 1) * wp_uvector
                            wp_interp.append(
                                list(local_waypoints_np[i] + next_wp_vector))

                    wp_interp.append(list(local_waypoints_np[-1]))

                    controller.update_waypoints(wp_interp)
                    pass
            if local_waypoints != None and local_waypoints != []:

                controller.update_values(current_x, current_y, current_yaw,
                                         current_speed, current_timestamp,
                                         frame)
                controller.update_controls()
                cmd_throttle, cmd_steer, cmd_brake = controller.get_commands()
            else:
                cmd_throttle = 0.0
                cmd_steer = 0.0
                cmd_brake = 0.0

            if skip_first_frame and frame == 0:
                pass
            elif local_waypoints == None:
                pass
            else:
                ## if i % 5 == 0:
                wp_interp_np = np.array(wp_interp)
                path_indices = np.floor(
                    np.linspace(0, wp_interp_np.shape[0] - 1,
                                INTERP_MAX_POINTS_PLOT))

            #if len(agent.get_local_planner().waypoints_queue) < num_min_waypoints and args.loop:
            #    agent.reroute(spawn_points)
            #    tot_target_reached += 1
            #    world.hud.notification("The target has been reached " +
            #                            str(tot_target_reached) + " times.", seconds=4.0)

            #elif len(agent.get_local_planner().waypoints_queue) == 0 and not args.loop:
            #    print("Target reached, mission accomplished...")
            #   break

            #speed_limit = world.role_name.get_speed_limit()
            #agent.get_local_planner().set_speed(speed_limit)

            #cmd_throttle = 0.4
            #cmd_steer = 0
            #cmd_brake = 0
            dist_to_last_waypoint = np.linalg.norm(
                np.array([
                    waypoints[-1][0] - current_x, waypoints[-1][1] - current_y
                ]))
            if dist_to_last_waypoint < DIST_THRESHOLD_TO_LAST_WAYPOINT:
                reached_the_end = True
            if reached_the_end:
                cmd_steer = np.fmax(np.fmin(0, 1.0), -1.0)
                cmd_throttle = np.fmax(np.fmin(0, 1.0), 0)
                cmd_brake = np.fmax(np.fmin(0.1, 1.0), 0)
                break
            #cmd_steer = np.fmax(np.fmin(cmd_steer, 1.0), -1.0)
            kmd_throttle = np.fmax(np.fmin(cmd_throttle, 1.0), 0)
            #cmd_brake = np.fmax(np.fmin(cmd_brake, 1.0), 0)
            print("Throttle before", cmd_throttle)
            print("Throttle after", kmd_throttle)

            code_control.throttle = cmd_throttle
            code_control.steer = cmd_steer
            code_control.brake = cmd_brake
            code_control.gear = 3

            vehicle_control_publisher.publish(code_control)
            print("Code control", code_control)

            throttle_angle = code_control.throttle * 135  #Kind of makes sense but the maximum is 130 degrees lets say random guess :) #Ill have to change the zeros
            break_angle = code_control.brake * 135
            steer_angle = (
                code_control.steer * -135
            ) + 95  #here we state that 0 is the 95 degrees so anything below tends towards 0 and viceversa

            print("steer", cmd_steer)

            throttle_pub.publish(throttle_angle)
            break_pub.publish(break_angle)
            steer_pub.publish(steer_angle)

            #world.role_name.apply_control(carla.VehicleControl(throttle=cmd_throttle,
            #                                           steer=cmd_steer,
            #                                           brake=cmd_brake))

        if reached_the_end:
            print("Reached the end of path. Writing to controller_output...")
        else:
            print("Exceeded assessment time. Writing to controller_output...")

    finally:
        if world is not None:
            world.destroy()
        pygame.quit()