Пример #1
0
def analysis_dual_iter_algo(x_train, x_test, A, D, L, lbda, all_n_layers,
                            type_, max_iter=300, device=None,
                            net_kwargs=None, verbose=1):
    """ Chambolle solver for analysis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    Psi_A = np.linalg.pinv(A).dot(D)
    inv_AtA = np.linalg.pinv(A.dot(A.T))

    def _grad(v, x):
        return analysis_dual_grad(v, A, D, x, Psi_A=Psi_A)

    def _obj(v, x):
        v = np.atleast_2d(v)
        u = v_to_u(v, x, A=A, D=D, inv_AtA=inv_AtA)
        return analysis_primal_obj(u, A, D, x, lbda)

    def _prox(v, step_size):
        # XXX step_size is here to homogenize API
        v = np.atleast_2d(v)
        return np.clip(v, -lbda, lbda)

    v0_test, _, _ = init_vuz(A, D, x_test)
    v0_train, _, _ = init_vuz(A, D, x_train)

    max_iter = all_n_layers[-1]
    step_size = 1.0 / np.linalg.norm(Psi_A, ord=2) ** 2
    momentum = None if type_ == 'ista' else 'fista'
    name = 'ISTA' if type_ == 'ista' else 'FISTA'

    print("[ISTA iterative] training loss")
    params = dict(
        grad=lambda v: _grad(v, x_train),
        obj=lambda v: _obj(v, x_train), prox=_prox,
        x0=v0_train, momentum=momentum, restarting=None,
        max_iter=max_iter, step_size=step_size, early_stopping=False,
        debug=True, verbose=verbose,
    )
    _, train_loss = fista(**params)

    print("[ISTA iterative] testing loss")
    params = dict(
        grad=lambda v: _grad(v, x_test),
        obj=lambda v: _obj(v, x_test), prox=_prox,
        x0=v0_test, momentum=momentum, restarting=None,
        max_iter=max_iter, step_size=step_size, early_stopping=False,
        debug=True, verbose=verbose
    )
    _, test_loss = fista(**params)

    train_loss = train_loss[[0] + all_n_layers]
    test_loss = test_loss[[0] + all_n_layers]

    print(f"\r[{name}] iterations finished train-loss={train_loss[-1]:.6e} "
          f"test-loss={test_loss[-1]:.6e}")

    return train_loss, test_loss
Пример #2
0
def analysis_learned_taut_string(x_train, x_test, A, D, L, lbda, all_n_layers,
                                 type_=None, max_iter=300, device=None,
                                 net_kwargs=None, verbose=1):
    """ NN-algo solver for analysis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    params = None
    l_loss = []

    def record_loss(l_loss, u_train, u_test):
        l_loss.append(dict(
            train_loss=analysis_primal_obj(u_train, A, D, x_train, lbda),
            test_loss=analysis_primal_obj(u_test, A, D, x_test, lbda),
        ))
        return l_loss

    _, u0_train, _ = init_vuz(A, D, x_train)
    _, u0_test, _ = init_vuz(A, D, x_test)
    record_loss(l_loss, u0_train, u0_test)

    for n, n_layers in enumerate(all_n_layers):

        # Declare network for the given number of layers. Warm-init the first
        # layers with parameters learned with previous networks if any.
        algo = LearnTVAlgo(algo_type='lpgd_taut_string', A=A,
                           n_layers=n_layers, max_iter=max_iter, device=device,
                           initial_parameters=params, verbose=verbose,
                           **net_kwargs)

        # train
        t0_ = time.time()
        algo.fit(x_train, lbda=lbda)
        delta_ = time.time() - t0_

        # save parameters
        params = algo.export_parameters()

        # get train and test error
        u_train = algo.transform(x_train, lbda, output_layer=n_layers)
        u_test = algo.transform(x_test, lbda, output_layer=n_layers)
        l_loss = record_loss(l_loss, u_train, u_test)

        if verbose > 0:
            train_loss = l_loss[n]['train_loss']
            test_loss = l_loss[n]['test_loss']
            print(f"\r[{algo.name}|layers#{n_layers:3d}] model fitted "
                  f"{delta_:4.1f}s train-loss={train_loss:.4e} "
                  f"test-loss={test_loss:.4e}")

    df = pd.DataFrame(l_loss)
    to_return = (df['train_loss'].values, df['test_loss'].values)

    return to_return
Пример #3
0
def analysis_learned_algo(x_train, x_test, A, D, L, lbda, all_n_layers, type_,
                          max_iter=300, device=None, net_kwargs=None,
                          verbose=1):
    """ NN-algo solver for analysis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    params = None

    _, u0_train, _ = init_vuz(A, D, x_train)
    _, u0_test, _ = init_vuz(A, D, x_test)

    train_loss_init = analysis_primal_obj(u0_train, A, D, x_train, lbda)
    test_loss_init = analysis_primal_obj(u0_test, A, D, x_test, lbda)
    train_loss, test_loss = [train_loss_init], [test_loss_init]

    algo_type = 'origtv' if ('untrained' in type_) else type_

    for n_layers in all_n_layers:

        # declare network
        algo = LearnTVAlgo(algo_type=algo_type, A=A, n_layers=n_layers,
                           max_iter=max_iter, device=device,
                           initial_parameters=params, verbose=verbose,
                           **net_kwargs)

        t0_ = time.time()
        if 'untrained' not in type_:
            algo.fit(x_train, lbda=lbda)
        delta_ = time.time() - t0_

        # save parameters
        params = algo.export_parameters()

        # get train and test error
        u_train = algo.transform(x_train, lbda, output_layer=n_layers)
        train_loss_ = analysis_primal_obj(u_train, A, D, x_train, lbda)
        train_loss.append(train_loss_)

        u_test = algo.transform(x_test, lbda, output_layer=n_layers)
        test_loss_ = analysis_primal_obj(u_test, A, D, x_test, lbda)
        test_loss.append(test_loss_)

        if verbose > 0:
            print(f"\r[{algo.name}|layers#{n_layers:3d}] model fitted "
                  f"{delta_:4.1f}s train-loss={train_loss_:.4e} "
                  f"test-loss={test_loss_:.4e}")

    to_return = (np.array(train_loss), np.array(test_loss))

    return to_return
Пример #4
0
 def _get_init(self, x, lbda, force_numpy=False):
     x0, u0, _ = init_vuz(self.net_solver.A,
                          self.net_solver.D, x, lbda)
     if force_numpy:
         return np.array(x0), np.array(u0)
     else:
         return x0, u0
Пример #5
0
    def forward(self, x, lbda, output_layer=None):
        """ Forward pass of the network. """
        output_layer = self.check_output_layer(output_layer)

        # initialized variables
        _, u, _ = init_vuz(self.A,
                           self.D,
                           x,
                           lbda,
                           inv_A=self.inv_A_,
                           device=self.device)

        for layer_id in range(output_layer):
            layer_params = self.parameter_groups[f'layer-{layer_id}']
            # retrieve parameters
            h = layer_params['h']
            hth = layer_params['hth']
            mul_lbda = layer_params.get('threshold', 1.0 / self.l_)
            mul_lbda = check_tensor(mul_lbda, device=self.device)

            # apply one 'iteration'
            u = hth_id_u_tensor(hth, u) + htx_tensor(h, x)
            u = ProxTV_l1.apply(u, lbda * mul_lbda)

        return u
Пример #6
0
def analysis_primal_dual_iter_algo(x_train, x_test, A, D, L, lbda,
                                   all_n_layers, type_, max_iter=300,
                                   device=None, net_kwargs=None, verbose=1):
    """ Condat-Vu solver for analysis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    max_iter = all_n_layers[-1]
    rho = 1.0
    sigma = 0.5
    L_A = np.linalg.norm(A, ord=2) ** 2
    L_D = np.linalg.norm(D, ord=2) ** 2
    tau = 1.0 / (L_A / 2.0 + sigma * L_D)

    v0_test, u0_test, _ = init_vuz(A, D, x_test, force_numpy=True)
    v0_train, u0_train, _ = init_vuz(A, D, x_train, force_numpy=True)

    if verbose > 0:
        print("[Condat-Vu iterative] training loss")
    params = dict(
        grad=lambda u: analysis_primal_grad(u, A, x_train),
        obj=lambda u: analysis_primal_obj(u, A, D, x_train, lbda),
        prox=lambda t: _soft_th_numpy(t, lbda / sigma),
        psi=lambda u: u.dot(D), adj_psi=lambda v: v.dot(D.T),
        v0=v0_train, z0=u0_train, lbda=lbda, sigma=sigma, tau=tau, rho=rho,
        max_iter=max_iter, early_stopping=False, debug=True, verbose=verbose,
    )
    _, _, train_loss = condatvu(**params)

    if verbose > 0:
        print("[Condat-Vu iterative] testing loss")
    params = dict(
        grad=lambda u: analysis_primal_grad(u, A, x_test),
        obj=lambda u: analysis_primal_obj(u, A, D, x_test, lbda),
        prox=lambda t: _soft_th_numpy(t, lbda / sigma),
        psi=lambda u: u.dot(D), adj_psi=lambda v: v.dot(D.T),
        v0=v0_test, z0=u0_test, lbda=lbda, sigma=sigma, tau=tau, rho=rho,
        max_iter=max_iter, early_stopping=False, debug=True, verbose=verbose,
    )
    _, _, test_loss = condatvu(**params)

    train_loss = train_loss[[0] + all_n_layers]
    test_loss = test_loss[[0] + all_n_layers]

    if verbose > 0:
        print(f"\r[Condat-Vu] iterations finished "
              f"train-loss={train_loss[-1]:.4e} test-loss={test_loss[-1]:.4e}")

    return train_loss, test_loss
Пример #7
0
def synthesis_iter_algo(x_train, x_test, A, D, L, lbda, all_n_layers, type_,
                        max_iter=300, device=None, net_kwargs=None,
                        verbose=1):
    """ Iterative-algo solver for synthesis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    name = 'ISTA' if type_ == 'chambolle' else 'FISTA'
    max_iter = all_n_layers[-1]
    LA = L.dot(A)
    step_size = 1.0 / np.linalg.norm(LA, ord=2) ** 2

    _, _, z0_test = init_vuz(A, D, x_test)
    _, _, z0_train = init_vuz(A, D, x_train)

    momentum = None if type_ == 'ista' else type_

    if verbose > 0:
        print("[ISTA iterative] training loss")
    params = dict(
        grad=lambda z: synthesis_primal_grad(z, A, L, x_train),
        obj=lambda z: synthesis_primal_obj(z, A, L, x_train, lbda),
        prox=lambda z, s: pseudo_soft_th_numpy(z, lbda, s),
        x0=z0_train,  momentum=momentum, restarting=None,
        max_iter=max_iter, step_size=step_size, early_stopping=False,
        debug=True, verbose=verbose,
    )
    _, train_loss = fista(**params)

    if verbose > 0:
        print("[ISTA iterative] testing loss")
    params = dict(
        grad=lambda z: synthesis_primal_grad(z, A, L, x_test),
        obj=lambda z: synthesis_primal_obj(z, A, L, x_test, lbda),
        prox=lambda z, s: pseudo_soft_th_numpy(z, lbda, s),
        x0=z0_test,  momentum=momentum, restarting=None,
        max_iter=max_iter, step_size=step_size, early_stopping=False,
        debug=True, verbose=verbose,
    )
    _, test_loss = fista(**params)

    train_loss = train_loss[[0] + all_n_layers]
    test_loss = test_loss[[0] + all_n_layers]

    if verbose > 0:
        print(f"[{name}] iterations finished "
              f"train-loss={train_loss[-1]:.4e} test-loss={test_loss[-1]:.4e}")

    return train_loss, test_loss
Пример #8
0
def analysis_primal_iter_algo(x_train, x_test, A, D, L, lbda, all_n_layers,
                              type_, max_iter=300, device=None,
                              net_kwargs=None, verbose=1):
    """ Iterative-algo solver for synthesis TV problem. """
    net_kwargs = dict() if net_kwargs is None else net_kwargs
    name = 'ISTA' if type_ == 'ista' else 'FISTA'
    max_iter = all_n_layers[-1]
    step_size = 1.0 / np.linalg.norm(A, ord=2) ** 2

    _, u0_test, _ = init_vuz(A, D, x_test)
    _, u0_train, _ = init_vuz(A, D, x_train)

    momentum = None if type_ == 'ista' else type_

    if verbose > 0:
        print(f"[analysis {name} iterative] training loss")
    params = dict(
        grad=lambda z: analysis_primal_grad(z, A, x_train),
        obj=lambda z: analysis_primal_obj(z, A, D, x_train, lbda),
        prox=lambda z, s: np.array([tv1_1d(z_, lbda * s) for z_ in z]),
        x0=u0_train,  momentum=momentum, restarting=None,
        max_iter=max_iter, step_size=step_size, early_stopping=False,
        debug=True, verbose=verbose,
    )
    _, train_loss = fista(**params)

    if verbose > 0:
        print(f"[analysis {name} iterative] testing loss")
    params = dict(
        grad=lambda z: analysis_primal_grad(z, A, x_test),
        obj=lambda z: analysis_primal_obj(z, A, D, x_test, lbda),
        prox=lambda z, s: np.array([tv1_1d(z_, lbda * s) for z_ in z]),
        x0=u0_test,  momentum=momentum, restarting=None,
        max_iter=max_iter, step_size=step_size, early_stopping=False,
        debug=True, verbose=verbose,
    )
    _, test_loss = fista(**params)

    train_loss = train_loss[[0] + all_n_layers]
    test_loss = test_loss[[0] + all_n_layers]

    if verbose > 0:
        print(f"\r[{name}] iterations finished "
              f"train-loss={train_loss[-1]:.6e} test-loss={test_loss[-1]:.6e}")

    return train_loss, test_loss
Пример #9
0
def test_untrained_analysis_lista(lbda, parametrization, n):
    """ Test the gradient of z. """
    rng = check_random_state(None)
    x, _, _, _, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    v0, u0, _ = init_vuz(A, D, x)

    n_layers = 10
    rho = 1.0
    sigma = 0.5
    L_D = np.linalg.norm(D.dot(D.T), ord=2)
    L_A = np.linalg.norm(A.dot(A.T), ord=2)
    tau = 1.0 / (L_A / 2.0 + sigma * L_D**2)

    lista = LearnTVAlgo(algo_type=parametrization,
                        A=A,
                        n_layers=n_layers,
                        device='cpu')
    loss_untrained_condat = [analysis_primal_obj(u0, A, D, x, lbda)]
    for n_layer_ in range(1, n_layers + 1):
        z = lista.transform(x=x, lbda=lbda, output_layer=n_layer_)
        loss_untrained_condat.append(analysis_primal_obj(z, A, D, x, lbda))
    loss_untrained_condat = np.array(loss_untrained_condat)

    v0, u0, _ = init_vuz(A, D, x, force_numpy=True)
    params = dict(
        grad=lambda u: analysis_primal_grad(u, A, x),
        obj=lambda u: analysis_primal_obj(u, A, D, x, lbda),
        prox=lambda z: pseudo_soft_th_numpy(z, lbda, 1.0 / sigma),
        psi=lambda u: u.dot(D),
        adj_psi=lambda v: v.dot(D.T),
        v0=v0,
        z0=u0,
        lbda=lbda,
        sigma=sigma,
        tau=tau,
        rho=rho,
        max_iter=n_layers,
        early_stopping=False,
        debug=True,
        verbose=0,
    )
    _, _, loss_condat = condatvu(**params)

    np.testing.assert_allclose(loss_condat, loss_untrained_condat, atol=1e-20)
Пример #10
0
def test_coherence_init(lbda, seed):
    rng = check_random_state(seed)
    x, _, _, L, D, A = synthetic_1d_dataset()

    v0 = None
    v0, u0, z0 = init_vuz(A, D, x, v0=v0)
    cost_1 = synthesis_primal_obj(z0, A, L, x, lbda)
    cost_2 = analysis_primal_obj(u0, A, D, x, lbda)
    cost_3 = analysis_primal_obj(v_to_u(v0, x, A, D), A, D, x, lbda)

    np.testing.assert_allclose(cost_1, cost_2)
    np.testing.assert_allclose(cost_1, cost_3)

    v0 = rng.randn(*v0.shape)
    v0, u0, z0 = init_vuz(A, D, x, v0=v0)
    synthesis_primal_obj(z0, A, L, x, lbda)
    cost_1 = synthesis_primal_obj(z0, A, L, x, lbda)
    cost_2 = analysis_primal_obj(u0, A, D, x, lbda)
    cost_3 = analysis_primal_obj(v_to_u(v0, x, A, D), A, D, x, lbda)

    np.testing.assert_allclose(cost_1, cost_2)
    np.testing.assert_allclose(cost_1, cost_3)
Пример #11
0
def test_coherence_analysis_loss(parametrization, lbda, n):
    """ Test coherence regarding the loss function between learnt and fixed
    algorithms. """
    rng = check_random_state(None)
    x, _, _, _, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    _, _, z = init_vuz(A, D, x)
    z_ = check_tensor(z, device='cpu')

    cost = analysis_primal_obj(z, A, D, x, lbda=lbda)
    ltv = LearnTVAlgo(algo_type=parametrization,
                      A=A,
                      n_layers=10,
                      device='cpu')
    cost_ref = ltv._loss_fn(x, lbda, z_)

    np.testing.assert_allclose(cost_ref, cost, atol=1e-30)
Пример #12
0
    def transform(self, x, lbda, output_layer=None):
        if output_layer is None:
            output_layer = self.n_layers

        _, _, z0 = init_vuz(self.A, self.D, x)

        params = dict(
            grad=lambda z: synthesis_primal_grad(z, self.A, self.L, x),
            obj=lambda z: synthesis_primal_obj(z, self.A, self.L, x, lbda),
            prox=lambda z, mu: pseudo_soft_th_numpy(z, lbda, mu),
            x0=z0,
            momentum=self.momentum,
            step_size=self.step_size,
            restarting=None,
            max_iter=output_layer,
            early_stopping=False,
            debug=True,
            verbose=self.verbose)

        return fista(**params)[0]
Пример #13
0
    def transform(self, x, lbda, output_layer=None):
        if output_layer is None:
            output_layer = self.n_layers

        _, u0, _ = init_vuz(self.A, self.D, x)

        params = dict(
            grad=lambda z: analysis_primal_grad(z, self.A, x),
            obj=lambda z: analysis_primal_obj(z, self.A, self.D, x, lbda),
            prox=lambda z, s: np.array([tv1_1d(z_, lbda * s) for z_ in z]),
            x0=u0,
            momentum=self.momentum,
            step_size=self.step_size,
            restarting=None,
            max_iter=output_layer,
            early_stopping=False,
            debug=True,
            verbose=self.verbose,
        )

        return fista(**params)[0]
Пример #14
0
def test_coherence_training_analysis_loss(parametrization, lbda, n):
    """ Test coherence regarding the loss function between learnt and fixed
    algorithms. """
    rng = check_random_state(None)
    x, _, _, _, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)

    _, u0, _ = init_vuz(A, D, x)
    train_loss = [analysis_primal_obj(u0, A, D, x, lbda)]
    train_loss_ = [analysis_primal_obj(u0, A, D, x, lbda)]

    for n_layers in range(1, 10):
        lista = LearnTVAlgo(algo_type=parametrization,
                            A=A,
                            n_layers=n_layers,
                            max_iter=10)
        lista.fit(x, lbda=lbda)
        train_loss_.append(lista.training_loss_[-1])
        u = lista.transform(x, lbda, output_layer=n_layers)
        train_loss.append(analysis_primal_obj(u, A, D, x, lbda))

    np.testing.assert_allclose(train_loss_, train_loss, atol=1e-30)
Пример #15
0
def test_untrained_synthesis_lista(lbda, parametrization, n):
    """ Test the gradient of z. """
    rng = check_random_state(None)
    x, _, _, L, D, A = synthetic_1d_dataset(n=n, s=0.5, snr=0.0, seed=rng)
    _, _, z0 = init_vuz(A, D, x)

    n_layers = 10
    LA = L.dot(A)
    step_size = 1.0 / np.linalg.norm(LA, ord=2)**2

    lista = LearnTVAlgo(algo_type=parametrization,
                        A=A,
                        n_layers=n_layers,
                        device='cpu')
    loss_untrained_lista = [
        synthesis_primal_obj(z=z0, A=A, L=L, x=x, lbda=lbda)
    ]
    for n_layer_ in range(1, n_layers + 1):
        z_hat = lista.transform(x=x, lbda=lbda, output_layer=n_layer_)
        loss_untrained_lista.append(
            synthesis_primal_obj(z=z_hat, A=A, L=L, x=x, lbda=lbda))
    loss_untrained_lista = np.array(loss_untrained_lista)

    params = dict(
        grad=lambda z: synthesis_primal_grad(z, A, L, x),
        obj=lambda z: synthesis_primal_obj(z, A, L, x, lbda),
        prox=lambda z, s: pseudo_soft_th_numpy(z, lbda, s),
        x0=z0,
        momentum=None,
        restarting=None,
        max_iter=n_layers,
        step_size=step_size,
        early_stopping=False,
        debug=True,
        verbose=0,
    )
    _, loss_ista = fista(**params)

    np.testing.assert_allclose(loss_ista, loss_untrained_lista, atol=1e-20)
Пример #16
0
                  h=h,
                  n_times_valid=n_times_valid,
                  name='Iterative-z',
                  max_iter_z=int(args.iter_mult * args.max_iter_z),
                  solver_type='fista-z-step',
                  verbose=1)
    ta_iter = TA(**params)

    t0 = time.time()
    _, _, _ = ta_iter.prox_t(y_test, args.temp_reg)
    print(f"ta_iterative.prox_t finished : {time.time() - t0:.2f}s")
    loss_ta_iter = ta_iter.l_loss_prox_t

    n_samples = nx * ny * nz
    y_test_ravel = y_test.reshape(n_samples, args.n_time_frames)
    _, u0, _ = init_vuz(H, D, y_test_ravel, args.temp_reg)
    loss_ta_learn = [_obj_t_analysis(u0, y_test_ravel, h, args.temp_reg)]

    init_net_params = None
    params = dict(t_r=t_r,
                  h=h,
                  n_times_valid=n_times_valid,
                  net_solver_training_type='recursive',
                  name='Learned-z',
                  solver_type='learn-z-step',
                  verbose=1,
                  max_iter_training_net=args.max_training_iter)

    for i, n_layers in enumerate(all_layers):

        params['max_iter_z'] = n_layers