Пример #1
0
    def __init__(self, lons, lats, face_nodes, img):
        """
        lons, lats : 1d array in node index order
        face_nodes: iterable of iterable of node index
        img: 1d array of source data. Same length as face nodes

        """
        # convert to 3d space
        self._geocent = ccrs.Geocentric(globe=ccrs.Globe())
        self.img = img
        xyz = self._geocent.transform_points(ccrs.Geodetic(), lons, lats)
        self._nodes_xyz = xyz
        start = time.time()
        self._kd = KDTree(xyz)
        end = time.time()
        logging.info('KD Construction time ({} points): {}'.format(
            lons.size, end - start))
        self._face_nodes = np.array(face_nodes)
        self._node_faces = fmgc.create_node_faces_array(self._face_nodes,
                                                        num_nodes=len(lons))
Пример #2
0
    def test_transform_points_xyz(self):
        # Test geodetic transforms when using z value
        rx = np.array([2574.32516e3])
        ry = np.array([837.562e3])
        rz = np.array([5761.325e3])

        src_proj = ccrs.Geocentric()
        target_proj = ccrs.Geodetic()

        res = target_proj.transform_points(x=rx, y=ry, z=rz, src_crs=src_proj)

        glat = res[..., 0]
        glon = res[..., 1]
        galt = res[..., 2]

        # Solution generated by pyproj
        solx = np.array([18.0224043189])
        soly = np.array([64.9796515089])
        solz = np.array([5048.03893734])

        assert_arr_almost_eq(glat, solx)
        assert_arr_almost_eq(glon, soly)
        assert_arr_almost_eq(galt, solz)
Пример #3
0
def mpl_plot(data2d,lon,lat,title,longname,units,proj,clev,cmap,gllfile):
    
    # Setup the plot
    figure = pyplot.figure(figsize=(15, 10))
    dataproj=crs.PlateCarree()

    # pcolor/tripcolor doesn't use nelvels or contour intervals
    if len(clev)==1:
        vmin=None
        vmax=None
        nlevels=int(round(clev[0]))
    else:
        vmin=clev[0]
        vmax=clev[1]
        nlevels=int(round( (clev[1]-clev[0])/clev[2] ))

    if proj=="latlon":
        plotproj=crs.PlateCarree(central_longitude=0.0)
        ax = pyplot.axes(projection=plotproj)
        ax.set_global()
    elif proj=="US1":
        plotproj=plotproj=crs.PlateCarree(central_longitude=0.0)
        ax = pyplot.axes(projection=plotproj)
        ax.set_extent([-180, 0, -30, 75],crs=dataproj)
    elif proj=="andes":
        plotproj=plotproj=crs.PlateCarree(central_longitude=0.0)
        ax = pyplot.axes(projection=plotproj)
        ax.set_extent([-100, -40, -40, 15],crs=dataproj)
    elif proj=="himalaya":
        plotproj=plotproj=crs.PlateCarree(central_longitude=90.0)
        ax = pyplot.axes(projection=plotproj)
        ax.set_extent([50, 110, 0, 60],crs=dataproj)
    elif proj=="oro":
        plotproj=crs.Orthographic(central_longitude=-45.0, central_latitude=45.0)
        ax = pyplot.axes(projection=plotproj)
        ax.set_global()
    else:
        print("Bad projection argument: ",projection)
        sys.exit(3)

    ax.coastlines(linewidth=0.2)
    
    # strucgtured lat/lon or unstructured data?
    struct=False
    if len(lon)*len(lat) == numpy.prod(data2d.shape): struct=True
    
    compute_tri=True
    if ~struct and os.path.isfile(gllfile):
        cfile = Nio.open_file(gllfile,"r")
        ec=cfile.variables["element_corners"]
        nd=ec.shape
        # by Euler, number of subcells is number of gll nodes -2
        if (nd[1] == len(lat)-2):
            ntris=nd[1]*2
            tri=numpy.empty((ntris,3), dtype=int)
            
            tri[::2,0]=ec[0,:]
            tri[::2,1]=ec[1,:]
            tri[::2,2]=ec[2,:]
            
            tri[1::2,0]=ec[0,:]
            tri[1::2,1]=ec[2,:]
            tri[1::2,2]=ec[3,:]
            tri=tri-1   # zero indexing
            compute_tri=False


    print("data min/max=",numpy.amin(data2d),numpy.amax(data2d))
    print("colormap min/max=",vmin,vmax)
    if struct:
        data2d_ext, lon2 = add_cyclic_point(data2d, coord=lon,axis=1)
        print("MPL plotting structured data (with added cyclic point)")
        pl=ax.pcolormesh(lon2, lat, data2d_ext,vmin=vmin,vmax=vmax,
                       transform=dataproj, cmap=cmap)
        #pl=ax.contourf(lon2, lat, data2d_ext, nlevels,vmin=vmin,vmax=vmax,
        #               transform=dataproj, cmap=cmap)
    elif compute_tri:
        print("MPL plot using internal Delaunay triangulation")
        # do the triangulation in the plot coordinates for better results
        tcoords = plotproj.transform_points(dataproj,lon[:],lat[:])
        # need to remove non-visible points
        xi=tcoords[:,0]!=numpy.inf
        tc=tcoords[xi,:]
        datai=data2d[:][xi]  # convert to numpy array, then subset
        
        pl = ax.tripcolor(tc[:,0],tc[:,1], datai,vmin=vmin, vmax=vmax,
                          shading='gouraud',cmap=cmap)
    else:
        print("MPL plot using gll subcell triangulation")
        # latlon->cartesian->local coords. this will put any seams at plot boundaries
        proj3d=crs.Geocentric()   # for cartesian (x,y,z) representation
        x3d = proj3d.transform_points(dataproj,lon[:],lat[:])
        tcoords = plotproj.transform_points(proj3d,x3d[:,0],x3d[:,1],x3d[:,2])

        #Remove bad triangles:
        x0=tcoords[tri[:,0],0]
        y0=tcoords[tri[:,0],1]
        x1=tcoords[tri[:,1],0]
        y1=tcoords[tri[:,1],1]
        x2=tcoords[tri[:,2],0]
        y2=tcoords[tri[:,2],1]
        d=numpy.empty(tri.shape)
        d[:,0]=((x0-x1)**2 + (y0-y1)**2)**0.5
        d[:,1]=((x0-x2)**2 + (y0-y2)**2)**0.5
        d[:,2]=((x1-x2)**2 + (y1-y2)**2)**0.5
        dmax=numpy.amax(d,axis=1)
        gmin=numpy.nanmin(dmax[dmax != numpy.inf])
        gmax=numpy.nanmax(dmax[dmax != numpy.inf])
        print("triangle max lengths: ",gmin,gmax)
        mask = numpy.logical_or( dmax > 25*gmin, numpy.isnan(dmax))
        # gouraud shading requires we remove non-visable triangles
        pl = ax.tripcolor(tcoords[:,0],tcoords[:,1],tri,data2d,vmin=vmin,vmax=vmax,
                          mask=mask,shading='gouraud',cmap=cmap)
        # plot some of the triangles to make sure they are ok:
        #ax.triplot(tcoords[:,0],tcoords[:,1],tri[1:100,:],'go-')
        
    
    cb = pyplot.colorbar(pl, orientation='horizontal', 
                         label='%s (%s)'%(longname, units),shrink=0.75, pad=0.1)