Пример #1
0
def maincall(inputfiles,
             flavor=None,
             init=None,
             mediadb=None,
             outputfile=None):

    if not flavor:
        flavor = config.get('sbml', 'default_flavor')

    if outputfile:
        model_id = os.path.splitext(os.path.basename(outputfile))[0]
    else:
        model_id = 'community'
        outputfile = 'community.xml'

    models = [
        load_cbmodel(inputfile, flavor=flavor) for inputfile in inputfiles
    ]
    community = Community(model_id, models)
    model = community.merged_model

    if init:
        if not mediadb:
            mediadb = project_dir + config.get('input', 'media_library')

        try:
            media_db = load_media_db(mediadb)
        except IOError:
            raise IOError('Failed to load media library:' + mediadb)

        init_env = Environment.from_compounds(media_db[init])
        init_env.apply(model, inplace=True)

    save_cbmodel(model, outputfile, flavor=flavor)
Пример #2
0
def benchmark(rebuild=True,
              biolog=True,
              essentiality=True,
              extra_args=None,
              species=None):

    if species is not None:
        if species not in organisms:
            print(f"No such species available: {species}")
    if rebuild:
        build_models(extra_args, species)

    models = load_models()
    media_db = load_media_db(f'{data_path}/media_db.tsv')

    if biolog:
        biolog_data = load_biolog_data()
        df_biolog = run_biolog_benchmark(models, biolog_data, media_db,
                                         species)
        df_biolog.to_csv(f'{data_path}/results/biolog.tsv',
                         sep='\t',
                         index=False)
        value = mcc(df_biolog)
        print(f'Biolog final MCC value: {value:.3f}')

    if essentiality:
        essential, non_essential = load_essentiality_data()
        df_essentiality = run_essentiality_benchmark(models, essential,
                                                     non_essential, media_db,
                                                     species)
        df_essentiality.to_csv(f'{data_path}/results/essentiality.tsv',
                               sep='\t',
                               index=False)
        value = mcc(df_essentiality)
        print(f'Essentiality final MCC value: {value:.3f}')
Пример #3
0
def main(inputfiles, flavor=None, split_pool=False, no_biomass=False, init=None, mediadb=None, ext_comp_id=None, outputfile=None):

    if not flavor:
        flavor = config.get('sbml', 'default_flavor')

    if outputfile:
        model_id = os.path.splitext(os.path.basename(outputfile))[0]
    else:
        model_id = 'community'
        outputfile = 'community.xml'

    if ext_comp_id is None:
        ext_comp_id = 'C_e'

    models = [load_cbmodel(inputfile, flavor=flavor) for inputfile in inputfiles]

    community = Community(model_id, models,
                          extracellular_compartment_id=ext_comp_id,
                          merge_extracellular_compartments=(not split_pool),
                          create_biomass=(not no_biomass))

    merged = community.generate_merged_model()

    if init:
        if not mediadb:
            mediadb = project_dir + config.get('input', 'media_library')

        try:
            media_db = load_media_db(mediadb)
        except IOError:
            raise IOError('Failed to load media library:' + mediadb)

        if split_pool:
            exchange_format = "'R_EX_M_{}_e_pool'"
        else:
            exchange_format = "'R_EX_{}_e'"
        init_env = Environment.from_compounds(media_db[init], exchange_format=exchange_format)
        init_env.apply(merged, inplace=True)

    save_cbmodel(merged, outputfile, flavor=flavor)
Пример #4
0
def maincall(inputfile,
             media,
             mediadb=None,
             universe=None,
             universe_file=None,
             outputfile=None,
             flavor=None,
             spent=None,
             verbose=False):

    if verbose:
        print('Loading model...')

    try:
        model = load_cbmodel(inputfile, flavor=flavor)
    except IOError:
        raise IOError('Failed to load model:' + inputfile)

    if spent:
        if verbose:
            print('Loading model for spent medium species...')

        try:
            spent_model = load_cbmodel(spent, flavor=flavor)
        except IOError:
            raise IOError('Failed to load model:' + spent)
    else:
        spent_model = None

    if verbose:
        print('Loading reaction universe...')

    if not universe_file:
        if universe:
            universe_file = "{}{}universe_{}.xml".format(
                project_dir, config.get('generated', 'folder'), universe)
        else:
            universe_file = project_dir + config.get('generated',
                                                     'default_universe')

    try:
        universe_model = load_cbmodel(universe_file, flavor='cobra')
    except IOError:
        if universe:
            raise IOError(
                'Failed to load universe "{0}". Please run build_universe.py --{0}.'
                .format(universe))
        else:
            raise IOError('Failed to load universe model:' + universe_file)

    if verbose:
        print('Loading media...')

    if not mediadb:
        mediadb = project_dir + config.get('input', 'media_library')

    try:
        media_db = load_media_db(mediadb)
    except IOError:
        raise IOError('Failed to load media database:' + mediadb)

    if verbose:
        m1, n1 = len(model.metabolites), len(model.reactions)
        print('Gap filling for {}...'.format(', '.join(media)))

    max_uptake = config.getint('gapfill', 'max_uptake')
    multiGapFill(model,
                 universe_model,
                 media,
                 media_db,
                 max_uptake=max_uptake,
                 inplace=True,
                 spent_model=spent_model)

    if verbose:
        m2, n2 = len(model.metabolites), len(model.reactions)
        print('Added {} reactions and {} metabolites'.format((n2 - n1),
                                                             (m2 - m1)))

    if verbose:
        print('Saving SBML file...')

    if not outputfile:
        outputfile = os.path.splitext(inputfile)[0] + '_gapfill.xml'

    if not flavor:
        flavor = config.get('sbml', 'default_flavor')

    save_cbmodel(model, outputfile, flavor=flavor)

    if verbose:
        print('Done.')
Пример #5
0
def maincall(inputfile, input_type='protein', outputfile=None, diamond_args=None, universe=None, universe_file=None,
         ensemble_size=None, verbose=False, debug=False, flavor=None, gapfill=None, blind_gapfill=False, init=None,
         mediadb=None, default_score=None, uptake_score=None, soft_score=None, soft=None, hard=None, reference=None,
         ref_score=None, recursive_mode=False):

    if recursive_mode:
        model_id = os.path.splitext(os.path.basename(inputfile))[0]

        if outputfile:
            outputfile = f'{outputfile}/{model_id}.xml'
        else:
            outputfile = os.path.splitext(inputfile)[0] + '.xml'

    else:
        if outputfile:
            model_id = os.path.splitext(os.path.basename(outputfile))[0]
        else:
            model_id = os.path.splitext(os.path.basename(inputfile))[0]
            outputfile = os.path.splitext(inputfile)[0] + '.xml'

    model_id = build_model_id(model_id)

    outputfolder = os.path.abspath(os.path.dirname(outputfile))

    if not os.path.exists(outputfolder):
        try:
            os.makedirs(outputfolder)
        except:
            print('Unable to create output folder:', outputfolder)
            return

    if soft:
        try:
            soft_constraints = load_soft_constraints(soft)
        except IOError:
            raise IOError('Failed to load soft-constraints file:' + soft)
    else:
        soft_constraints = None

    if hard:
        try:
            hard_constraints = load_hard_constraints(hard)
        except IOError:
            raise IOError('Failed to load hard-constraints file:' + hard)
    else:
        hard_constraints = None

    if input_type == 'refseq':

        if verbose:
            print(f'Downloading genome {inputfile} from NCBI...')

        ncbi_table = load_ncbi_table(project_dir + config.get('input', 'refseq'))
        inputfile = download_ncbi_genome(inputfile, ncbi_table)

        if not inputfile:
            print('Failed to download genome from NCBI.')
            return

        input_type = 'protein' if inputfile.endswith('.faa.gz') else 'dna'

    if input_type == 'protein' or input_type == 'dna':
        if verbose:
            print('Running diamond...')
        diamond_db = project_dir + config.get('generated', 'diamond_db')
        blast_output = os.path.splitext(inputfile)[0] + '.tsv'
        exit_code = run_blast(inputfile, input_type, blast_output, diamond_db, diamond_args, verbose)

        if exit_code is None:
            print('Unable to run diamond (make sure diamond is available in your PATH).')
            return

        if exit_code != 0:
            print('Failed to run diamond.')
            if diamond_args is not None:
                print('Incorrect diamond args? Please check documentation or use default args.')
            return

        annotations = load_diamond_results(blast_output)
    elif input_type == 'eggnog':
        annotations = load_eggnog_data(inputfile)
    elif input_type == 'diamond':
        annotations = load_diamond_results(inputfile)
    else:
        raise ValueError('Invalid input type: ' + input_type)

    if verbose:
        print('Loading universe model...')

    if not universe_file:
        if universe:
            universe_file = f"{project_dir}{config.get('generated', 'folder')}universe_{universe}.xml.gz"
        else:
            universe_file = project_dir + config.get('generated', 'default_universe')

    try:
        universe_model = load_cbmodel(universe_file, flavor='bigg')
        universe_model.id = model_id
    except IOError:
        available = '\n'.join(glob(f"{project_dir}{config.get('generated', 'folder')}universe_*.xml.gz"))
        raise IOError(f'Failed to load universe model: {universe_file}\nAvailable universe files:\n{available}')

    if reference:
        if verbose:
            print('Loading reference model...')

        try:
            ref_model = load_cbmodel(reference)
        except:
            raise IOError('Failed to load reference model.')
    else:
        ref_model = None

    if gapfill or init:

        if verbose:
            print('Loading media library...')

        if not mediadb:
            mediadb = project_dir + config.get('input', 'media_library')

        try:
            media_db = load_media_db(mediadb)
        except IOError:
            raise IOError('Failed to load media library:' + mediadb)

    if verbose:
        print('Scoring reactions...')

    gene_annotations = pd.read_csv(project_dir + config.get('generated', 'gene_annotations'), sep='\t')
    bigg_gprs = project_dir + config.get('generated', 'bigg_gprs')
    gprs = pd.read_csv(bigg_gprs)
    gprs = gprs[gprs.reaction.isin(universe_model.reactions)]

    debug_output = model_id if debug else None
    scores, gene2gene = reaction_scoring(annotations, gprs, debug_output=debug_output)

    if scores is None:
        print('The input genome did not match sufficient genes/reactions in the database.')
        return

    if not flavor:
        flavor = config.get('sbml', 'default_flavor')

    init_env = None

    if init:
        if init in media_db:
            init_env = Environment.from_compounds(media_db[init])
        else:
            print(f'Error: medium {init} not in media database.')

    universe_model.metadata['Description'] = 'This model was built with CarveMe version ' + version

    if ensemble_size is None or ensemble_size <= 1:
        if verbose:
            print('Reconstructing a single model')

        model = carve_model(universe_model, scores, inplace=(not gapfill), default_score=default_score,
                            uptake_score=uptake_score, soft_score=soft_score, soft_constraints=soft_constraints,
                            hard_constraints=hard_constraints, ref_model=ref_model, ref_score=ref_score,
                            init_env=init_env, debug_output=debug_output)
        annotate_genes(model, gene2gene, gene_annotations)

    else:
        if verbose:
            print('Building an ensemble of', ensemble_size, 'models')

        ensemble = build_ensemble(universe_model, scores, ensemble_size, init_env=init_env)

        annotate_genes(ensemble, gene2gene, gene_annotations)
        save_ensemble(ensemble, outputfile, flavor=flavor)

    if model is None:
        print("Failed to build model.")
        return

    if not gapfill:
        save_cbmodel(model, outputfile, flavor=flavor)

    else:
        media = gapfill.split(',')

        if verbose:
            m1, n1 = len(model.metabolites), len(model.reactions)
            print(f"Gap filling for {', '.join(media)}...")

        max_uptake = config.getint('gapfill', 'max_uptake')

        if blind_gapfill:
            scores = None
        else:
            scores = dict(scores[['reaction', 'normalized_score']].values)
        multiGapFill(model, universe_model, media, media_db, scores=scores, max_uptake=max_uptake, inplace=True)

        if verbose:
            m2, n2 = len(model.metabolites), len(model.reactions)
            print(f'Added {(n2 - n1)} reactions and {(m2 - m1)} metabolites')

        if init_env:  # Initializes environment again as new exchange reactions can be acquired during gap-filling
            init_env.apply(model, inplace=True, warning=False)

        save_cbmodel(model, outputfile, flavor=flavor)

    if verbose:
        print('Done.')
Пример #6
0
def main(inputfile, input_type='protein', outputfile=None, diamond_args=None, universe=None, universe_file=None,
         ensemble_size=None, verbose=False, debug=False, flavor=None, gapfill=None, blind_gapfill=False, init=None,
         mediadb=None, default_score=None, uptake_score=None, soft_score=None, soft=None, hard=None, reference=None,
         ref_score=None, recursive_mode=False, specified_solver=None, feas_tol=None, opt_tol=None, int_feas_tol=None):

    if recursive_mode:
        model_id = os.path.splitext(os.path.basename(inputfile))[0]

        if outputfile:
            outputfile = '{}/{}.xml'.format(outputfile, model_id)
        else:
            outputfile = os.path.splitext(inputfile)[0] + '.xml'

    else:
        if outputfile:
            model_id = os.path.splitext(os.path.basename(outputfile))[0]
        else:
            model_id = os.path.splitext(os.path.basename(inputfile))[0]
            outputfile = os.path.splitext(inputfile)[0] + '.xml'

    model_id = build_model_id(model_id)

    outputfolder = os.path.abspath(os.path.dirname(outputfile))

    if not os.path.exists(outputfolder):
        try:
            os.makedirs(outputfolder)
        except:
            print('Unable to create output folder:', outputfolder)
            return

    if soft:
        try:
            soft_constraints = load_soft_constraints(soft)
        except IOError:
            raise IOError('Failed to load soft-constraints file:' + soft)
    else:
        soft_constraints = None

    if hard:
        try:
            hard_constraints = load_hard_constraints(hard)
        except IOError:
            raise IOError('Failed to load hard-constraints file:' + hard)
    else:
        hard_constraints = None

    if input_type == 'refseq' or input_type == 'genbank':

        if verbose:
            print('Downloading genome {} from NCBI...'.format(inputfile))

        ncbi_table = load_ncbi_table(project_dir + config.get('ncbi', input_type))
        inputfile = download_ncbi_genome(inputfile, ncbi_table)

        if not inputfile:
            print('Failed to download genome from NCBI.')
            return

        input_type = 'protein' if inputfile.endswith('.faa.gz') else 'dna'

    if input_type == 'protein' or input_type == 'dna':
        if verbose:
            print('Running diamond...')
        diamond_db = project_dir + config.get('input', 'diamond_db')
        blast_output = os.path.splitext(inputfile)[0] + '.tsv'
        exit_code = run_blast(inputfile, input_type, blast_output, diamond_db, diamond_args, verbose)

        if exit_code is None:
            print('Unable to run diamond (make sure diamond is available in your PATH).')
            return

        if exit_code != 0:
            print('Failed to run diamond.')
            if diamond_args is not None:
                print('Incorrect diamond args? Please check documentation or use default args.')
            return

        annotations = load_diamond_results(blast_output)
    elif input_type == 'eggnog':
        annotations = load_eggnog_data(inputfile)
    elif input_type == 'diamond':
        annotations = load_diamond_results(inputfile)
    else:
        raise ValueError('Invalid input type: ' + input_type)

    if verbose:
        print('Loading universe model...')

    if not universe_file:
        if universe:
            universe_file = "{}{}universe_{}.xml.gz".format(project_dir, config.get('generated', 'folder'), universe)
        else:
            universe_file = project_dir + config.get('generated', 'default_universe')

    # change default solver if a solver is specified in the input
    if specified_solver is not None:

        if specified_solver != config.get('solver', 'default_solver'):
            set_default_solver(specified_solver)

    params_to_set = {'FEASIBILITY_TOL': feas_tol,
                     'OPTIMALITY_TOL': opt_tol,
                     'INT_FEASIBILITY_TOL': int_feas_tol}
    for key,value in params_to_set.items():
        if value is not None:
            set_default_parameter(getattr(Parameter, key), value)

    try:
        universe_model = load_cbmodel(universe_file, flavor=config.get('sbml', 'default_flavor'))
        universe_model.id = model_id
    except IOError:
        available = '\n'.join(glob("{}{}universe_*.xml.gz".format(project_dir, config.get('generated', 'folder'))))
        raise IOError('Failed to load universe model: {}\nAvailable universe files:\n{}'.format(universe_file, available))

    if reference:
        if verbose:
            print('Loading reference model...')

        try:
            ref_model = load_cbmodel(reference)
        except:
            raise IOError('Failed to load reference model.')
    else:
        ref_model = None

    if gapfill or init:

        if verbose:
            print('Loading media library...')

        if not mediadb:
            mediadb = project_dir + config.get('input', 'media_library')

        try:
            media_db = load_media_db(mediadb)
        except IOError:
            raise IOError('Failed to load media library:' + mediadb)

    if verbose:
        print('Scoring reactions...')

    bigg_gprs = project_dir + config.get('generated', 'bigg_gprs')
    gprs = pd.read_csv(bigg_gprs)
    gprs = gprs[gprs.reaction.isin(universe_model.reactions)]

    debug_output = model_id if debug else None
    scores = reaction_scoring(annotations, gprs, debug_output=debug_output)

    if scores is None:
        print('The input genome did not match sufficient genes/reactions in the database.')
        return

    if not flavor:
        flavor = config.get('sbml', 'default_flavor')

    init_env = None

    if init:
        if init in media_db:
            init_env = Environment.from_compounds(media_db[init])
        else:
            print('Error: medium {} not in media database.'.format(init))

    universe_model.metadata['Description'] = 'This model was built with CarveMe version ' + version

    if ensemble_size is None or ensemble_size <= 1:
        if verbose:
            print('Reconstructing a single model')

        if not gapfill:
            carve_model(universe_model, scores,
                        outputfile=outputfile,
                        flavor=flavor,
                        default_score=default_score,
                        uptake_score=uptake_score,
                        soft_score=soft_score,
                        soft_constraints=soft_constraints,
                        hard_constraints=hard_constraints,
                        ref_model=ref_model,
                        ref_score=ref_score,
                        init_env=init_env,
                        debug_output=debug_output)
        else:
            model = carve_model(universe_model, scores,
                                inplace=False,
                                default_score=default_score,
                                uptake_score=uptake_score,
                                soft_score=soft_score,
                                soft_constraints=soft_constraints,
                                hard_constraints=hard_constraints,
                                ref_model=ref_model,
                                ref_score=ref_score,
                                init_env=init_env,
                                debug_output=debug_output)
    else:
        if verbose:
            print('Building an ensemble of', ensemble_size, 'models')
        build_ensemble(universe_model, scores, ensemble_size, outputfile, flavor, init_env=init_env)

    if gapfill and model is not None:

        media = gapfill.split(',')

        if verbose:
            m1, n1 = len(model.metabolites), len(model.reactions)
            print('Gap filling for {}...'.format(', '.join(media)))

        max_uptake = config.getint('gapfill', 'max_uptake')

        if blind_gapfill:
            scores = None
        else:
            scores = dict(scores[['reaction', 'normalized_score']].values)
        multiGapFill(model, universe_model, media, media_db, scores=scores, max_uptake=max_uptake, inplace=True)

        if verbose:
            m2, n2 = len(model.metabolites), len(model.reactions)
            print('Added {} reactions and {} metabolites'.format((n2 - n1), (m2 - m1)))

        if init_env:  #Should initialize enviroment again as new exchange reactions can be acquired during gap-filling
            init_env.apply(model, inplace=True, warning=False)

        save_cbmodel(model, outputfile, flavor=flavor)

    if verbose:
        print('Done.')