Пример #1
0
    def read(self, file, nints, nskip, spw, selectpol, scan, datacol):
        """ Reads in Measurement Set data using CASA.
        spw is list of subbands. zero-based.
        Scan is zero-based selection based on scan order, not actual scan number.
        selectpol is list of polarization strings (e.g., ['RR','LL'])
        """
        self.file = file
        self.scan = scan
        self.nints = nints

        # get spw info. either load pickled version (if found) or make new one
        pklname = string.join(file.split(".")[:-1], ".") + "_init.pkl"
        #        pklname = pklname.split('/')[-1]  # hack to remove path and write locally
        if os.path.exists(pklname):
            print "Pickle of initializing info found. Loading..."
            pkl = open(pklname, "r")
            try:
                (self.npol_orig, self.nbl, self.blarr, self.inttime, spwinfo, scansummary) = pickle.load(pkl)
            except EOFError:
                print "Bad pickle file. Exiting..."
                return 1
            # old way, casa 3.3?
            #            scanlist = scansummary['summary'].keys()
            #            starttime_mjd = scansummary['summary'][scanlist[scan]]['0']['BeginTime']
            # new way, casa 4.0?
            scanlist = scansummary.keys()
            starttime_mjd = scansummary[scanlist[scan]]["0"]["BeginTime"]
            self.nskip = int(
                nskip * self.nbl
            )  # number of iterations to skip (for reading in different parts of buffer)
            self.npol = len(selectpol)
        else:
            print "No pickle of initializing info found. Making anew..."
            pkl = open(pklname, "wb")
            ms.open(self.file)
            spwinfo = ms.getspectralwindowinfo()
            scansummary = ms.getscansummary()

            # original (general version)
            #            scanlist = scansummary['summary'].keys()
            #            starttime_mjd = scansummary['summary'][scanlist[scan]]['0']['BeginTime']
            #            starttime0 = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+0/(24.*60*60),'d'),form=['ymd'], prec=9), 's'))
            #            stoptime0 = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+0.5/(24.*60*60), 'd'), form=['ymd'], prec=9), 's'))

            # for casa 4.0 (?) and later
            scanlist = scansummary.keys()
            # set time info
            self.inttime = scansummary[scanlist[scan]]["0"]["IntegrationTime"]
            self.inttime0 = self.inttime
            print "Initializing integration time (s):", self.inttime
            starttime_mjd = scansummary[scanlist[scan]]["0"]["BeginTime"]
            starttime0 = qa.getvalue(
                qa.convert(
                    qa.time(qa.quantity(starttime_mjd + 0 / (24.0 * 60 * 60), "d"), form=["ymd"], prec=9)[0], "s"
                )
            )[0]
            stoptime0 = qa.getvalue(
                qa.convert(
                    qa.time(qa.quantity(starttime_mjd + self.inttime / (24.0 * 60 * 60), "d"), form=["ymd"], prec=9)[0],
                    "s",
                )
            )[0]

            ms.selectinit(datadescid=0)  # initialize to initialize params
            selection = {"time": [starttime0, stoptime0]}
            ms.select(items=selection)
            da = ms.getdata([datacol, "axis_info"], ifraxis=True)
            ms.close()

            self.npol_orig = da[datacol].shape[0]
            self.nbl = da[datacol].shape[2]
            print "Initializing nbl:", self.nbl

            # good baselines
            bls = da["axis_info"]["ifr_axis"]["ifr_shortname"]
            self.blarr = n.array([[int(bls[i].split("-")[0]), int(bls[i].split("-")[1])] for i in xrange(len(bls))])
            self.nskip = int(
                nskip * self.nbl
            )  # number of iterations to skip (for reading in different parts of buffer)

            pickle.dump((self.npol_orig, self.nbl, self.blarr, self.inttime, spwinfo, scansummary), pkl)
        pkl.close()

        self.ants = n.unique(self.blarr)
        self.nants = len(n.unique(self.blarr))
        self.nants0 = len(n.unique(self.blarr))
        print "Initializing nants:", self.nants
        self.npol = len(selectpol)
        print "Initializing %d of %d polarizations" % (self.npol, self.npol_orig)

        # set desired spw
        if (len(spw) == 1) & (spw[0] == -1):
            #            spwlist = spwinfo['spwInfo'].keys()    # old way
            spwlist = spwinfo.keys()  # new way
        else:
            spwlist = spw

        self.freq_orig = n.array([])
        for spw in spwlist:
            # new way
            nch = spwinfo[str(spw)]["NumChan"]
            ch0 = spwinfo[str(spw)]["Chan1Freq"]
            chw = spwinfo[str(spw)]["ChanWidth"]
            self.freq_orig = n.concatenate((self.freq_orig, (ch0 + chw * n.arange(nch)) * 1e-9))
        # old way
        #            nch = spwinfo['spwInfo'][str(spw)]['NumChan']
        #            ch0 = spwinfo['spwInfo'][str(spw)]['Chan1Freq']
        #            chw = spwinfo['spwInfo'][str(spw)]['ChanWidth']

        self.freq = self.freq_orig[self.chans]
        self.nchan = len(self.freq)
        print "Initializing nchan:", self.nchan

        # set requested time range based on given parameters
        timeskip = self.inttime * nskip
        # new way
        starttime = qa.getvalue(
            qa.convert(
                qa.time(qa.quantity(starttime_mjd + timeskip / (24.0 * 60 * 60), "d"), form=["ymd"], prec=9)[0], "s"
            )
        )[0]
        stoptime = qa.getvalue(
            qa.convert(
                qa.time(
                    qa.quantity(starttime_mjd + (timeskip + nints * self.inttime) / (24.0 * 60 * 60), "d"),
                    form=["ymd"],
                    prec=9,
                )[0],
                "s",
            )
        )[0]
        print "First integration of scan:", qa.time(qa.quantity(starttime_mjd, "d"), form=["ymd"], prec=9)[0]
        print
        # new way
        print "Reading scan", str(scanlist[scan]), "for times", qa.time(
            qa.quantity(starttime_mjd + timeskip / (24.0 * 60 * 60), "d"), form=["hms"], prec=9
        )[0], "to", qa.time(
            qa.quantity(starttime_mjd + (timeskip + nints * self.inttime) / (24.0 * 60 * 60), "d"), form=["hms"], prec=9
        )[
            0
        ]

        # read data into data structure
        ms.open(self.file)
        ms.selectinit(datadescid=spwlist[0])  # reset select params for later data selection
        selection = {"time": [starttime, stoptime]}
        ms.select(items=selection)
        print "Reading %s column, SB %d, polarization %s..." % (datacol, spwlist[0], selectpol)
        ms.selectpolarization(selectpol)
        da = ms.getdata([datacol, "axis_info", "u", "v", "w", "flag"], ifraxis=True)
        u = da["u"]
        v = da["v"]
        w = da["w"]
        if da == {}:
            print "No data found."
            return 1
        newda = n.transpose(da[datacol], axes=[3, 2, 1, 0])  # if using multi-pol data.
        flags = n.transpose(da["flag"], axes=[3, 2, 1, 0])
        if len(spwlist) > 1:
            for spw in spwlist[1:]:
                ms.selectinit(datadescid=spw)  # reset select params for later data selection
                ms.select(items=selection)
                print "Reading %s column, SB %d, polarization %s..." % (datacol, spw, selectpol)
                ms.selectpolarization(selectpol)
                da = ms.getdata([datacol, "axis_info", "flag"], ifraxis=True)
                newda = n.concatenate((newda, n.transpose(da[datacol], axes=[3, 2, 1, 0])), axis=2)
                flags = n.concatenate((flags, n.transpose(da["flag"], axes=[3, 2, 1, 0])), axis=2)
        ms.close()

        # Initialize more stuff...
        self.nschan0 = self.nchan

        # set variables for later writing data **some hacks here**
        self.nspect0 = 1
        self.nwide0 = 0
        self.sdf0 = da["axis_info"]["freq_axis"]["resolution"][0][0] * 1e-9
        self.sdf = self.sdf0
        self.ischan0 = 1
        self.sfreq0 = da["axis_info"]["freq_axis"]["chan_freq"][0][0] * 1e-9
        self.sfreq = self.sfreq0
        self.restfreq0 = 0.0
        self.pol0 = -1  # assumes single pol?

        # Assumes MS files store uvw in meters. Corrects by mean frequency of channels in use.
        self.u = u.transpose() * self.freq_orig[0] * (1e9 / 3e8)
        self.v = v.transpose() * self.freq_orig[0] * (1e9 / 3e8)
        self.w = w.transpose() * self.freq_orig[0] * (1e9 / 3e8)

        # set integration time and time axis
        ti = da["axis_info"]["time_axis"]["MJDseconds"]
        self.reltime = ti - ti[0]

        # define relative phase center for each integration
        self.l0 = n.zeros(self.nints)
        self.m0 = n.zeros(self.nints)

        self.rawdata = newda
        self.flags = n.invert(
            flags
        )  # tests show that MS has opposite flag convention as Miriad! using complement of MS flag in tpipe.
        print "Shape of raw data, time:"
        print self.rawdata.shape, self.reltime.shape
Пример #2
0
    def __init__(self, file, nints=1000, nskip=0, ddid=-1, selectpol=['RR','LL'], scan=0, datacol='data'):
        """Initializes the class "obs". This creates new object containing data and metadata for an observation.
        It also includes functions to manipulate data and do transients analysis.
        Note that this uses CASA libraries in a way that requires it to be run from within "casapy".
        Use scan, nints, and nskip to control where to start.
        datacol specifies column of MS to read. Standard MS data columns are: 'data', 'corrected_data', 'model_data'.

        Examples of usage in python/casapy:
        import vla_tpipe
        obs = vla_tpipe.obs() -- create observation object for first file in a directory.
        print obs.data.shape -- see the structure of data read in. dimensions are (time, baseline, channel, polarization)
        results = obs.bisplc(show=1) -- create a bispectrum lightcurve and show any candidate transients. results are returned in 'return' object
        """

        # critical parameters. may need to edit these
        ants = range(28)    # set what antennas to use. default is to use "range" to specify all antennas with range(n_ant+1)
        self.file = file

        # get spw info. either load pickled version (if found) or make new one
        pklname = string.join(file.split('.')[:-1], '.') + '_init.pkl'
        if os.path.exists(pklname):
            print 'Pickle of initializing info found. Loading...'
            pkl = open(pklname, 'r')
            (self.npol_orig, self.npol, self.nbl, self.blarr, self.ants, self.nants, self.nants0, self.nskip, self.inttime, self.inttime0, spwinfo, scansummary) = pickle.load(pkl)
            scanlist = scansummary['summary'].keys()
            starttime_mjd = scansummary['summary'][scanlist[scan]]['0']['BeginTime']
            self.nskip = int(nskip*self.nbl)    # number of iterations to skip (for reading in different parts of buffer)
        else:
            print 'No pickle of initializing info found. Making anew...'
            pkl = open(pklname, 'wb')
            ms.open(self.file)
            spwinfo = ms.getspectralwindowinfo()
            scansummary = ms.getscansummary()
            scanlist = scansummary['summary'].keys()

            starttime_mjd = scansummary['summary'][scanlist[scan]]['0']['BeginTime']
            starttime0 = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+0/(24.*60*60),'d'),form=['ymd'], prec=9), 's'))
            stoptime0 = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+0.5/(24.*60*60), 'd'), form=['ymd'], prec=9), 's'))
            ms.selectinit(datadescid=0)  # initialize to initialize params
            selection = {'time': [starttime0, stoptime0], 'antenna1': ants, 'antenna2': ants}
            ms.select(items = selection)
            da = ms.getdata([datacol,'axis_info'], ifraxis=True)
            ms.close()

            self.npol_orig = da[datacol].shape[0]
            self.npol = len(selectpol)
            self.nbl = da[datacol].shape[2]
            print 'Initializing %d of %d polarizations' % (self.npol, self.npol_orig)
            print 'Initializing nbl:', self.nbl

            # good baselines
            bls = da['axis_info']['ifr_axis']['ifr_shortname']
            self.blarr = n.array([[int(bls[i].split('-')[0]),int(bls[i].split('-')[1])] for i in range(len(bls))])
            self.ants = n.unique(self.blarr)
            self.nants = len(self.ants)
            self.nants0 = len(self.ants)
            print 'Initializing nants:', self.nants
            self.nskip = int(nskip*self.nbl)    # number of iterations to skip (for reading in different parts of buffer)

            # set integration time
            ti0 = da['axis_info']['time_axis']['MJDseconds']
#            self.inttime = n.mean([ti0[i+1] - ti0[i] for i in range(len(ti0)-1)])
            self.inttime = scansummary['summary'][scanlist[scan]]['0']['IntegrationTime']
            self.inttime0 = self.inttime
            print 'Initializing integration time (s):', self.inttime

            pickle.dump((self.npol_orig, self.npol, self.nbl, self.blarr, self.ants, self.nants, self.nants0, self.nskip, self.inttime, self.inttime0, spwinfo, scansummary), pkl)
        pkl.close()

        # read in multiple subbands ("data id" in casa parlance).
        if ddid < 0:
            ddidlist = range(len(spwinfo['spwInfo']))
        else:
            ddidlist = [ddid]

        freq = n.array([])
        for ddid in ddidlist:
            nch = spwinfo['spwInfo'][str(ddid)]['NumChan']
            ch0 = spwinfo['spwInfo'][str(ddid)]['Chan1Freq']
            chw = spwinfo['spwInfo'][str(ddid)]['ChanWidth']
            freq = n.concatenate( (freq, (ch0 + chw * n.arange(nch)) * 1e-9) )

#        self.chans = n.array(range(2,62))  # can flag by omitting channels here
        self.chans = n.arange(nch*len(ddidlist))    # default is to take all chans
        self.freq = freq[self.chans]
        self.nchan = len(self.freq)
        self.track0 = [n.zeros(len(self.chans)), list(self.chans)]
        self.track0 = [n.zeros(len(self.chans)), list(self.chans)]

        # set requested time range based on given parameters
        timeskip = self.inttime*nskip
        starttime = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+timeskip/(24.*60*60),'d'),form=['ymd'], prec=9), 's'))
        stoptime = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+(timeskip+nints*self.inttime)/(24.*60*60), 'd'), form=['ymd'], prec=9), 's'))
        print 'First integration of scan:', qa.time(qa.quantity(starttime_mjd,'d'),form=['ymd'],prec=9)
        print
        print 'Reading from', qa.time(qa.quantity(starttime_mjd+timeskip/(24.*60*60),'d'),form=['hms'], prec=9), 'to', qa.time(qa.quantity(starttime_mjd+(timeskip+nints*self.inttime)/(24.*60*60), 'd'), form=['hms'], prec=9)

        # read data into data structure
        ms.open(self.file)
        ms.selectinit(datadescid=ddidlist[0])  # reset select params for later data selection
        selection = {'time': [starttime, stoptime], 'antenna1': ants, 'antenna2': ants}
        ms.select(items = selection)
        print 'Reading %s, SB %d, polarization %s...' % (datacol, ddidlist[0], selectpol)
        ms.selectpolarization(selectpol)
        da = ms.getdata([datacol,'axis_info'], ifraxis=True)
        if da == {}:
            print 'No data found.'
            return 1
        newda = n.transpose(da[datacol], axes=[3,2,1,0])  # if using multi-pol data.
        if len(ddidlist) > 1:
            for ddid in ddidlist[1:]:
                ms.selectinit(datadescid=ddid)  # reset select params for later data selection
                ms.select(items = selection)
                print 'Reading %s, SB %d, polarization %s...' % (datacol, ddid, selectpol)
                ms.selectpolarization(selectpol)
                da = ms.getdata([datacol,'axis_info'], ifraxis=True)
                newda = n.concatenate( (newda, n.transpose(da[datacol], axes=[3,2,1,0])), axis=2 )
        ms.close()

        # check pol and baseline dimensions of data
        self.npol_orig = da[datacol].shape[0]
        self.npol = len(selectpol)
        self.nbl = da[datacol].shape[2]
        print 'Initializing %d of %d polarizations' % (self.npol, self.npol_orig)
        print 'Initializing nchan:', self.nchan
        print 'Initializing nbl:', self.nbl
        self.nskip = int(nskip*self.nbl)    # number of iterations to skip (for reading in different parts of buffer)

        # create data structures
#        self.rawdata = newda[len(newda)/2:]  # hack to remove autos
        self.rawdata = newda
        self.data = self.rawdata[:,:,self.chans]   # remove channels ignored earlier
        self.dataph = (self.data.mean(axis=3).mean(axis=1)).real   # create dataph, which is sum over all baselines. akin to calculating tied-array beam (possibly without calibration)
        self.min = self.dataph.min()
        self.max = self.dataph.max()
        print 'Shape of rawdata, data:'
        print self.rawdata.shape, self.data.shape
        print 'Dataph min, max:'
        print self.min, self.max

        # set integration time and time axis
        ti = da['axis_info']['time_axis']['MJDseconds']
        self.reltime = ti - ti[0]
Пример #3
0
    def __init__(self, filename, nints=1, nskip=0, ddid=-1, selectpol=['XX','YY']):
        """Initializes the class "mwa". This creates new object containing data and metadata for a set of files in a directory.
        It also includes functions to manipulate data and do some analysis, like making lightcurves, etc.
        Note that this uses CASA libraries in a way that requires it to be run from within "casapy". Other options exist elsewhere.
        Default is to read in first file (alphabetically) in the directory. Use nints and nskip to control where to start and number of files to read. this assumes that the alphabetical order is the time order.

        Examples of usage in python/casapy:
        import mwavis
        obs = mwavis.mwa('directory') -- create observation object for first file in a directory.
        print obs.data.shape -- see the structure of data read in. dimensions are (time, baseline, channel, polarization)
        results = obs.bisplc(show=1) -- create a bispectrum lightcurve and show any candidate transients. results are returned in 'return' object
        """

        # critical parameters. need to edit these
        ants = range(64)    # set what antennas to use. default is to use "range" to specify all antennas with range(n_ant+1)
        self.chans = n.array(range(64))  # set what channesl to use. default is to use range to select all channels.
        self.track0 = [n.zeros(len(self.chans)), self.chans]

        # open first file and read a bit of data to define data structure
        self.file = filename
        print 'Reading ', self.file
        ms.open(self.file)
        spwinfo = ms.getspectralwindowinfo()
        summary = ms.summary()

        # read in multiple subbands ("data id" in casa parlance). mwa probably doesn't use this.
        if ddid < 0:
            ddidlist = range(len(spwinfo['spwInfo']))
        else:
            ddidlist = [ddid]

        freq = n.array([])
        for ddid in ddidlist:
            nch = spwinfo['spwInfo'][str(ddid)]['NumChan']
            ch0 = spwinfo['spwInfo'][str(ddid)]['Chan1Freq']
            chw = spwinfo['spwInfo'][str(ddid)]['ChanWidth']
            freq = n.concatenate( (freq, (ch0 + chw * n.arange(nch)) * 1e-9) )

        self.freq = freq[self.chans]
        self.nchan = len(self.freq)

        # read data into data structure. start with subband 0, then iterate over higher ones. mwa probably only has 0.
        ms.selectinit(datadescid=0)  # reset select params for later data selection
        selection = {'antenna1': ants, 'antenna2': ants}
        ms.select(items = selection)
        print 'Reading SB %d, polarization %s...' % (0, selectpol)
        ms.selectpolarization(selectpol)
        da = ms.getdata(['data','axis_info'], ifraxis=True)
        if da == {}:
            print 'No data found.'
            return 1
        newda = n.transpose(da['data'], axes=[3,2,1,0])  # if using multi-pol data.
        if len(ddidlist) > 1:
            for ddid in ddidlist[1:]:
                ms.selectinit(datadescid=ddid)  # reset select params for later data selection
                ms.select(items = selection)
                print 'Reading SB %d, polarization %s...' % (ddid, selectpol)
                ms.selectpolarization(selectpol)
                da = ms.getdata(['data','axis_info'], ifraxis=True)
                newda = n.concatenate( (newda, n.transpose(da['data'], axes=[3,2,1,0])), axis=2 )
        ms.close()
        rawdata = newda  # array for collecting raw data

        # check pol and baseline dimensions of data
        self.npol_orig = da['data'].shape[0]
        self.npol = len(selectpol)
        self.nbl = da['data'].shape[2]
        print 'Initializing %d of %d polarizations' % (self.npol, self.npol_orig)
        print 'Initializing nchan:', self.nchan
        print 'Initializing nbl:', self.nbl
        self.nskip = int(nskip*self.nbl)    # number of iterations to skip (for reading in different parts of buffer)

        # set number of antennas and names of baselines
        bls = da['axis_info']['ifr_axis']['ifr_shortname']
        self.blarr = n.array([[bls[i].split('-')[0],bls[i].split('-')[1]] for i in range(len(bls))])
        self.ants = n.unique(self.blarr)
        self.nants = len(self.ants)
        print 'Initializing nants:', self.nants

        # set integration time and time axis
        ti = da['axis_info']['time_axis']['MJDseconds']
        self.inttime = n.mean([ti[i+1] - ti[i] for i in range(len(ti)-1)])
        print 'Initializing integration time (s):', self.inttime
        self.reltime = ti - ti[0]

        if len(msfiles) > 1:
            for file in msfiles[1:]:

                ms.open(file)
                print 'Reading ', file
                spwinfo = ms.getspectralwindowinfo()

                # read in multiple subbands ("data id" in casa parlance). mwa probably doesn't use this.
                if ddid < 0:
                    ddidlist = range(len(spwinfo['spwInfo']))
                else:
                    ddidlist = [ddid]

                # read data into data structure. start with subband 0, then iterate over higher ones. mwa probably only has 0.
                ms.selectinit(datadescid=0)  # reset select params for later data selection
                ms.select(items = selection)
                print 'Reading SB %d, polarization %s...' % (0, selectpol)
                ms.selectpolarization(selectpol)
                da = ms.getdata(['data','axis_info'], ifraxis=True)
                if da == {}:
                    print 'No data found.'
                    return 1
                newda = n.transpose(da['data'], axes=[3,2,1,0])  # if using multi-pol data.
                if len(ddidlist) > 1:
                    for ddid in ddidlist[1:]:
                        ms.selectinit(datadescid=ddid)  # reset select params for later data selection
                        ms.select(items = selection)
                        print 'Reading SB %d, polarization %s...' % (ddid, selectpol)
                        ms.selectpolarization(selectpol)
                        da = ms.getdata(['data','axis_info'], ifraxis=True)
                        newda = n.concatenate( (newda, n.transpose(da['data'], axes=[3,2,1,0])), axis=2 )
                ms.close()
                rawdata = n.concatenate( (rawdata, newda), axis=0)

        # create data structures
        self.rawdata = rawdata
        self.data = rawdata[:,:,self.chans]   # remove channels ignored earlier
        self.dataph = (self.data.mean(axis=3).mean(axis=1)).real   # create dataph, which is sum over all baselines. akin to calculating tied-array beam (possibly without calibration)
        self.min = self.dataph.min()
        self.max = self.dataph.max()
        print 'Shape of rawdata, data:'
        print self.rawdata.shape, self.data.shape
        print 'Dataph min, max:'
        print self.min, self.max
Пример #4
0
    def __init__(self, filename, nints=1, nskip=0, selectpol=['XX','YY'], datacol='corrected'):
        """Initializes the class "lofar". This creates new object containing data and metadata for a set of files in a directory.
        It also includes functions to manipulate data and do some analysis, like making lightcurves, etc.
        Note that this uses CASA libraries in a way that requires it to be run from within "casapy". Other options exist elsewhere.
        Default is to read in first file (alphabetically) in the directory. Use nints and nskip to control where to start and number of files to read. this assumes that the alphabetical order is the time order.

        Examples of usage in python/casapy:
        import lofarvis
        obs = lofarvis.lofar('directory') -- create observation object for first file in a directory.
        print obs.data.shape -- see the structure of data read in. dimensions are (time, baseline, channel, polarization)
        results = obs.bisplc(show=1) -- create a bispectrum lightcurve and show any candidate transients. results are returned in 'return' object
        """

        # critical parameters. need to edit these
        ants = range(25)    # set what antennas to use. default is to use "range" to specify all antennas with range(n_ant+1)
        self.chans = n.array(range(1))  # set what channesl to use. default is to use range to select all channels.
        self.track0 = [n.zeros(len(self.chans)), self.chans]

        # open file and read a bit of data to define data structure
        self.file = filename
        print 'Reading ', self.file
        ms.open(self.file)
        spwinfo = ms.getspectralwindowinfo()
        summary = ms.summary()
        scansummary = ms.getscansummary()
        starttime_mjd = scansummary['summary']['0']['0']['BeginTime']
        starttime0 = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+0/(24.*60*60),'d'),form=['ymd'], prec=9), 's'))
        stoptime0 = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+0.5/(24.*60*60), 'd'), form=['ymd'], prec=9), 's'))
        ms.selectinit(datadescid=0)  # initialize to initialize params
        selection = {'time': [starttime0, stoptime0], 'antenna1': ants, 'antenna2': ants}
        da = ms.getdata([datacol,'axis_info', 'u', 'v', 'w'], ifraxis=True)
        ms.close()

        self.npol_orig = da[datacol].shape[0]
        self.npol = len(selectpol)
        self.nbl = da[datacol].shape[2]
        print 'Initializing %d of %d polarizations' % (self.npol, self.npol_orig)
        print 'Initializing nbl:', self.nbl

        # good baselines
        bls = da['axis_info']['ifr_axis']['ifr_shortname']
        self.blarr = n.array([[bls[i].split('-')[0],bls[i].split('-')[1]] for i in range(len(bls))])
        self.ants = n.unique(self.blarr)
        self.nants = len(self.ants)
        self.nants0 = len(self.ants)
        print 'Initializing nants:', self.nants
        self.nskip = int(nskip*self.nbl)    # number of iterations to skip (for reading in different parts of buffer)

        # set integration time
        ti0 = da['axis_info']['time_axis']['MJDseconds']
        self.inttime = scansummary['summary']['0']['0']['IntegrationTime']
        self.inttime0 = self.inttime
        print 'Initializing integration time (s):', self.inttime

        nch = spwinfo['spwInfo']['0']['NumChan']
        ch0 = spwinfo['spwInfo']['0']['Chan1Freq']
        chw = spwinfo['spwInfo']['0']['ChanWidth']
        freq = (ch0 + chw * n.arange(nch)) * 1e-9

        self.freq = freq[self.chans]
        self.nchan = len(self.freq)

        # read data into data structure. start with subband 0, then iterate over higher ones. lofar probably only has 0.
        timeskip = self.inttime*nskip
        starttime = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+timeskip/(24.*60*60),'d'),form=['ymd'], prec=9), 's'))
        stoptime = qa.getvalue(qa.convert(qa.time(qa.quantity(starttime_mjd+(timeskip+nints*self.inttime)/(24.*60*60), 'd'), form=['ymd'], prec=9), 's'))
        print 'First integration:', qa.time(qa.quantity(starttime_mjd,'d'),form=['ymd'],prec=9)
        print
        print 'Reading times', qa.time(qa.quantity(starttime_mjd+timeskip/(24.*60*60),'d'),form=['hms'], prec=9), 'to', qa.time(qa.quantity(starttime_mjd+(timeskip+nints*self.inttime)/(24.*60*60), 'd'), form=['hms'], prec=9)

        ms.open(self.file)
        ms.selectinit(datadescid=0)  # reset select params for later data selection
        selection = {'time': [starttime, stoptime], 'antenna1': ants, 'antenna2': ants}
        ms.select(items = selection)
        print 'Reading SB %d, polarization %s...' % (0, selectpol)
        ms.selectpolarization(selectpol)
        da = ms.getdata([datacol,'axis_info', 'u', 'v', 'w'], ifraxis=True)
        u = da['u']; v = da['v']; w = da['w']
        if da == {}:
            print 'No data found.'
            return 1
        newda = n.transpose(da[datacol], axes=[3,2,1,0])  # if using multi-pol data.
        ms.close()
        rawdata = newda  # array for collecting raw data

        # create data structures
        self.u = u.transpose() * (-self.freq.mean()*1e9/3e8)  # uvw are in m on ground. scale by -wavelenth to get projected lamba uvw (as in miriad?)
        self.v = v.transpose() * (-self.freq.mean()*1e9/3e8)
        self.w = w.transpose() * (-self.freq.mean()*1e9/3e8)
        self.rawdata = rawdata
        self.data = rawdata[:,:,self.chans]   # remove channels ignored earlier
        self.dataph = (self.data.mean(axis=3).mean(axis=1)).real   # create dataph, which is sum over all baselines. akin to calculating tied-array beam (possibly without calibration)
        self.min = self.dataph.min()
        self.max = self.dataph.max()
        print 'Shape of rawdata, data:'
        print self.rawdata.shape, self.data.shape
        print 'Dataph min, max:'
        print self.min, self.max
        ti = da['axis_info']['time_axis']['MJDseconds']
        self.reltime = ti - ti[0]
Пример #5
0
def pipeline(asdmfile, workdir='', mode='prep', intentfilter='OBSERVE_TARGET'):
    """ Pipeline to simplify quasi-blind searching over many scans and/or files.
    mode of 'frb' does multi-node processing of frb data.
    mode of 'any' does search over all scans of arbitrary observation.
    """

    if workdir == '':
        workdir = os.chdir(workdir)

    # strip out path
    if '/' in asdmfile:
        asdmfile = asdmfile.split('/')[-1]

    # data filler steps
#   asdmfile = search(datadir)   # daemon process?
    msfile = asdmfile + '.ms'
    telcalfile = asdmfile + '.GN'

    try:
        goodscans = prep(asdmfile, workdir=workdir, intentfilter=intentfilter)    # set up asdm and telcal files, get scans of interest (tuple with scann
        msfile2 = asdm2ms(asdmfile, msfile, goodscans[scan][0])
    except:
        raise

    if mode == 'prep':
        # just filling data...
        return msfile2

    elif mode == 'frb':

        # set good channels
#        nch = 64
#        edgechan = n.round(0.05*nch).astype('int')
#        chans = n.arange(edgechan, nch-edgechan, dtype='int')
        dmarr = [0,19.2033,38.4033,57.6025,76.8036,96.0093,115.222,134.445,153.68,172.93,192.198,211.486,230.797,250.133,269.498,288.894,308.323,327.788,347.292,366.837,386.426,406.062,425.747,445.484,465.276,485.125,505.033,525.005,545.042,565.147,585.322,605.571,625.896,646.3,666.786,687.355,708.012,728.759,749.598,770.532,791.565,812.699,833.936,855.28,876.733,898.299,919.979,941.778,963.697,985.741,1007.91,1030.21,1052.64,1075.21,1097.92,1120.76,1143.76,1166.9,1190.19,1213.63,1237.23,1260.99,1284.92,1309.01,1333.27,1357.7,1382.31,1407.09,1432.06,1457.22,1482.56,1508.1,1533.83,1559.76,1585.89,1612.23,1638.77,1665.53,1692.51,1719.7,1747.12,1774.77,1802.64,1830.75,1859.1,1887.69,1916.53,1945.61,1974.95,2004.54,2034.39,2064.51,2094.9,2125.56,2156.49,2187.71,2219.21,2250.99,2283.07,2315.45,2348.13,2381.12,2414.41,2448.02,2481.94,2516.19,2550.77,2585.68,2620.92,2656.51,2692.44,2728.72,2765.36,2802.36,2839.72,2877.45,2915.55,2954.04,2992.91]
        chans = range(23,31)+range(32,50)+range(70,128)

        d = leanpipe.pipe_thread(filename=msfile, nints=nints, nskip=0, iterint=200, spw=[0,1], chans=chans, dmarr=dmarr, fwhmsurvey=0.5, fwhmfield=0.5, selectpol=['RR','LL'], scan=0, datacol='data', size=25600, res=50, sigma_image=6., searchtype='imageallstat', telcalfile=telcalfile, filtershape=None, savecands=True)

    elif mode == 'any':
        # read structure of data
        os.chdir(workdir)
        ms.open(msfile)
        scans = ms.getscansummary()
        spwinfo = ms.getspectralwindowinfo()
        summary = ms.summary()
        ms.close()

        print 'Searching over %d field(s) in %d scans and %d spws.' % (summary['nfields'], len(scans.keys()), len(spwinfo))

        # search
        scanlist = scans.keys()
        for scan in scanlist:
            nints = int(n.round((scans[scan]['0']['EndTime']-scans[scan]['0']['BeginTime'])*24*3600/scans[scan]['0']['IntegrationTime'])-1)
            spws = scans[scan]['0']['SpwIds']
            for spw in spws:
                nch = spwinfo[str(spw)]['NumChan']
                print
                print 'For scan %d and spw %d, %d integrations and %d channels' % (int(scan), spws[spw], nints, nch)
                edgechan = n.round(0.05*nch).astype('int')
                chans = n.arange(edgechan, nch-edgechan, dtype='int')
                d = leanpipe.pipe_thread(filename=msfile, nints=nints, nskip=0, iterint=min(nints,200), spw=[spws[spw]], chans=chans, dmarr=range(0,300,30), fwhmsurvey=0.5, fwhmfield=0.5, selectpol=['RR','LL'], scan=int(scanlist.index(scan)), datacol='data', size=50000, res=100, sigma_bisp=5., sigma_image=5., calibratedfilter=True, specmodfilter=1.5, searchtype='imageallstat', telcalfile=telcalfile, telcalcalibrator='3C48', filtershape='b')
Пример #6
0
def computenoise(vis,datacolumn,m,minsamp=10,):

## estimate weights by inverse variance of visibilities in
## each baseline and spw, ## using all times
## works well for short observations where the rms is stable in time
## TBD: implement time binning for longer tracks
## NOTE: does not work well on data with bright sources
##       use uvsub to remove bright sources before running
##       then use uvsub(reverse=T) to put the sources back in
##
## inputs:   invis      ::   visibility ms
##           spwlist    ::   list of spectral windows to process
##                           default: '' (all)
##           minsamp    ::   minimum number of visibilities to estimate ##                           sample variance
##                           fewer visibilities means weight = 0
##           datacolumn ::   'corrected_data' (default)  or 'data'
##


    import numpy
    ms.open(vis,nomodify=False)

    
    
    spwlist = ms.getspectralwindowinfo().keys()

    ## loop over spectral windows
    for spw in spwlist:
        undersample = 0
        ms.msselect({'spw':spw})
        a = ms.getdata([datacolumn,"flag","sigma"],ifraxis=True)
        b = ms.getdata([datacolumn,"flag","weight"],ifraxis=True)
        d = a[datacolumn]
        f = a["flag"]
        m.message("old sigma: " + str(np.mean(a["sigma"])) + " in spw" \
            + str(spw))
        w = a["sigma"]
        ## loop over corr & baseline
        for corr in range(d.shape[0]):
            for base in range(d.shape[2]):
                dd = numpy.ravel(d[corr,:,base])
                ff = numpy.ravel(f[corr,:,base])
                gooddata = numpy.compress(ff==False,dd)
                if len(gooddata) < minsamp:
                    undersample += 1
                    m.failure('Cannot estimate sigma values from so few' \
                            + 'baseline values. Not performung estimate.')
                    break
                else:
                    if len(gooddata) <= 1:
                        m.failure('Cannot estimate sigma values from single' \
                            + 'baseline values. Not performing estimate.')
                        break
                    ww = numpy.std(gooddata)
                w[corr,base,:] = ww
        ## ugly trick to get the right data type:
        a["sigma"]=a["sigma"]*0.00+w
        m.message("new sigma: " + str(np.mean(a["sigma"]))+ " in spw" \
            + str(spw))
        b["weight"]=b["weight"]*0.00+w**-2 
        if undersample > 1:
           m.warn('Very low number of measurements per baseline in spw' + \
               str(spw) + ". Bad statistics expected.") 
        ms.putdata(a)
        ms.reset()

    ms.close()