Пример #1
0
 def get_sparsity_in(self, i):
     n = nlpsol_out(i)
     if n == "f":
         return Sparsity.scalar()
     elif n in ("x", "lam_x"):
         return Sparsity.dense(self.nx)
     elif n in ("g", "lam_g"):
         return Sparsity.dense(self.ng)
     else:
         return Sparsity(0, 0)
Пример #2
0
    def get_sparsity_in(self, i: int) -> tuple:
        """
        Get the sparsity of a specific variable

        Parameters
        ----------
        i: int
            The index of the variable

        Returns
        -------
        The sparsity of the variable
        """

        n = nlpsol_out(i)
        if n == "f":
            return Sparsity.scalar()
        elif n in ("x", "lam_x"):
            return Sparsity.dense(self.nx)
        elif n in ("g", "lam_g"):
            return Sparsity.dense(self.ng)
        else:
            return Sparsity(0, 0)
Пример #3
0
ocp.cost.cost_type_e = 'EXTERNAL'
W_u = 1e-3
theta = model.x[1]

ocp.model.cost_expr_ext_cost = tanh(theta)**2 + .5 * (model.x[0]**2 +
                                                      W_u * model.u**2)
ocp.model.cost_expr_ext_cost_e = tanh(theta)**2 + .5 * model.x[0]**2

custom_hess_u = W_u

J = horzcat(SX.eye(2), SX(2, 2))

print(DM(J.sparsity()))

# diagonal matrix with second order terms of outer loss function.
D = SX.sym('D', Sparsity.diag(2))
D[0, 0] = 1
[hess_tan, grad_tan] = hessian(tanh(theta)**2, theta)
D[1, 1] = if_else(theta == 0, hess_tan, grad_tan / theta)

custom_hess_x = J.T @ D @ J

zeros = SX(1, nx)
cost_expr_ext_cost_custom_hess = blockcat(custom_hess_u, zeros, zeros.T,
                                          custom_hess_x)
cost_expr_ext_cost_custom_hess_e = custom_hess_x

ocp.model.cost_expr_ext_cost_custom_hess = cost_expr_ext_cost_custom_hess
ocp.model.cost_expr_ext_cost_custom_hess_e = cost_expr_ext_cost_custom_hess_e

# set constraints