Пример #1
0
    print('==========', datetime.now() - start_time)


if __name__ == "__main__":
    Mean = [123.68, 116.78, 103.94]
    # Mean = [102.9801, 115.9465, 122.7717][::-1]
    config = Config(
        False,
        Mean,
        None,
        lr=0.00125,
        weight_decay=0.0001,
        num_cls=80,
        img_max=1333,
        img_min=800,
        anchor_scales=[[32], [64], [128], [256], [512]],
        anchor_ratios=[[0.5, 1, 2], [0.5, 1, 2], [0.5, 1, 2], [0.5, 1, 2],
                       [0.5, 1, 2]],
        fast_n_sample=512,
        roi_min_size=[4, 8, 16, 32, 64],
        roi_train_pre_nms=12000,
        roi_train_post_nms=2000,
        roi_test_pre_nms=6000,
        roi_test_post_nms=1000,
    )
    model = Mask_Rcnn

    model_file = '/home/zhai/PycharmProjects/Demo35/cascade_rcnn/train_M_GPU_single_node/models/Mask_Rcnn_cascade_4x_360000_1_0.pth'
    test(model, config, model_file)
    path = '/home/zhai/PycharmProjects/Demo35/cascade_rcnn/data_preprocess/'
    Bboxes = [path + 'coco_bboxes_2017.pkl']
    img_paths = [path + 'coco_imgpaths_2017.pkl']
    masks = [path + 'coco_mask_2017.pkl']
    files = [img_paths, Bboxes, masks]

    config = Config(True,
                    Mean,
                    files,
                    num_cls=80,
                    lr=0.00125,
                    weight_decay=0.0001,
                    batch_size_per_GPU=2,
                    gpus=2,
                    img_max=1333,
                    img_min=800,
                    anchor_scales=[[32], [64], [128], [256], [512]],
                    anchor_ratios=[[0.5, 1, 2], [0.5, 1, 2], [0.5, 1, 2],
                                   [0.5, 1, 2], [0.5, 1, 2]],
                    fast_n_sample=512,
                    bias_lr_factor=2,
                    roi_min_size=[4, 8, 16, 32, 64],
                    roi_train_pre_nms=12000,
                    roi_train_post_nms=2000,
                    roi_test_pre_nms=6000,
                    roi_test_post_nms=1000)

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    assert num_gpus == config.gpus
    print('--------GPUs--------', num_gpus)
    step = 0
                break
        if flag:
            break
    torch.save(model.state_dict(), './models/vgg16_cascade_final_1.pth')


if __name__ == "__main__":
    Mean = [123.68, 116.78, 103.94]
    path = '/home/zhai/PycharmProjects/Demo35/cascade_rcnn/data_preprocess/'
    Bboxes = [path + 'Bboxes_07.pkl', path + 'Bboxes_12.pkl']
    img_paths = [path + 'img_paths_07.pkl', path + 'img_paths_12.pkl']

    files = [img_paths, Bboxes]
    config = Config(True,
                    Mean,
                    files,
                    lr=0.001,
                    weight_decay=0.0005,
                    batch_size_per_GPU=1,
                    img_max=1000,
                    img_min=600,
                    bias_lr_factor=2,
                    roi_min_size=16)

    step = 0
    model = Faster_Rcnn
    x = 1
    pre_model_file = '/home/zhai/PycharmProjects/Demo35/py_Faster_tool/pre_model/vgg16_cf.pth'
    model_file = None
    train(model, config, step, x, pre_model_file, model_file=model_file)
Пример #4
0
    cv2.imshow('a', im)
    cv2.waitKey(2000)
    return im


if __name__ == "__main__":
    from datetime import datetime
    from cascade_rcnn.tool.config import Config

    Mean = [123.68, 116.78, 103.94]
    path = '/home/zhai/PycharmProjects/Demo35/pytorch_Faster_tool/data_preprocess/'
    Bboxes = [path + 'coco_bboxes_2017.pkl']
    img_paths = [path + 'coco_imgpaths_2017']
    masks = [path + 'coco_mask_2017.pkl']
    files = [img_paths, Bboxes, masks]
    config = Config(True, Mean, files, lr=0.00125, img_max=1000, img_min=600)
    dataset = Read_Data(config)

    dataloader = DataLoader(dataset,
                            batch_size=1,
                            num_workers=16,
                            collate_fn=lambda x: x)
    dataloader = DataLoader(dataset,
                            batch_size=2,
                            collate_fn=func,
                            shuffle=True,
                            drop_last=True,
                            pin_memory=False,
                            num_workers=1)
    c = 0
    for i in range(2):
Пример #5
0
    Res = {}
    start_time = datetime.now()

    for name in names[:m]:
        i += 1
        print(datetime.now(), i)
        im_file = test_dir + name + '.jpg'
        img = cv2.imread(im_file)
        img = torch.tensor(img)
        res = model(img)
        res = res.cpu()
        res = res.detach().numpy()

        Res[name] = res

    print('==========', datetime.now() - start_time)
    joblib.dump(Res, 'Faster_vgg16_cascade_1.pkl')
    GT = joblib.load('../mAP/voc_GT.pkl')
    AP = mAP(Res, GT, 20, iou_thresh=0.5, use_07_metric=True, e=0.01)
    print(AP)
    AP = AP.mean()
    print(AP)


if __name__ == "__main__":
    Mean = [123.68, 116.78, 103.94]
    model = Faster_Rcnn
    config = Config(False, Mean, None, img_max=1000, img_min=600, roi_min_size=16)
    model_file = '/home/zhai/PycharmProjects/Demo35/cascade_rcnn/train_one_GPU/models/vgg16_cascade_90000_1.pth'
    test(model, config, model_file)
Пример #6
0

if __name__ == "__main__":
    Mean = [123.68, 116.78, 103.94]
    path = '/home/zhai/PycharmProjects/Demo35/cascade_rcnn/data_preprocess/'
    Bboxes = [path + 'Bboxes_07.pkl', path + 'Bboxes_12.pkl']
    img_paths = [path + 'img_paths_07.pkl', path + 'img_paths_12.pkl']

    files = [img_paths, Bboxes]
    config = Config(True,
                    Mean,
                    files,
                    lr=0.001,
                    weight_decay=0.0005,
                    batch_size_per_GPU=1,
                    img_max=1000,
                    img_min=600,
                    roi_min_size=16,
                    roi_train_pre_nms=12000,
                    roi_train_post_nms=2000,
                    roi_test_pre_nms=6000,
                    roi_test_post_nms=300,
                    bias_lr_factor=2)

    step = 0
    model = Faster_Rcnn
    x = 1
    pre_model_file = '/home/zhai/PycharmProjects/Demo35/py_Faster_tool/pre_model/vgg16_cf.pth'
    model_file = ''
    train(model, config, step, x, pre_model_file, model_file=model_file)