def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=3, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--T', type=int, default=300, metavar='N', help='SNN time window') parser.add_argument('--resume', type=str, default=None, metavar='RESUME', help='Resume model from checkpoint') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'batch_size': args.batch_size} if use_cuda: kwargs.update({ 'num_workers': 1, 'pin_memory': True, 'shuffle': True }, ) transform = transforms.Compose([ transforms.ToTensor(), #transforms.Normalize((0.1307,), (0.3081,)) ]) dataset1 = datasets.MNIST('../data', train=True, download=True, transform=transform) dataset2 = datasets.MNIST('../data', train=False, transform=transform) snn_dataset = SpikeDataset(dataset2, T=args.T) #print(type(dataset1[0][0])) train_loader = torch.utils.data.DataLoader(dataset1, **kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **kwargs) #print(test_loader[0]) snn_loader = torch.utils.data.DataLoader(snn_dataset, **kwargs) model = Net().to(device) snn_model = CatNet(args.T).to(device) if args.resume != None: load_model(torch.load(args.resume), model) for param_tensor in snn_model.state_dict(): print(param_tensor, "\t", snn_model.state_dict()[param_tensor].size()) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(model, device, test_loader) scheduler.step() fuse_module(model) transfer_model(model, snn_model) test(snn_model, device, snn_loader)
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=3, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--T', type=int, default=160, metavar='N', help='SNN time window') parser.add_argument('--resume', type=str, default=None, metavar='RESUME', help='Resume model from checkpoint') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") f = np.load('dataeeg/eeg1201_r57_b_hamming_5s_2_c.npz') X_train_ = f['X_train_'] y_train_ = f['y_train_'] X_test = f['X_test'] y_test = f['y_test'] X_train_ = torch.FloatTensor(X_train_) y_train_ = torch.FloatTensor(y_train_) X_test = torch.FloatTensor(X_test) y_test = torch.FloatTensor(y_test) X_train_ = X_train_ * 3000 + (0.001) * torch.randn( len(X_train_), len(X_train_[0]), len(X_train_[0][0]), len(X_train_[0][0][0])) X_train_ = np.clip(X_train_, 0, 1) X_test = X_test * 3000 X_test = np.clip(X_test, 0, 1) for i in range(4): X_train_ = torch.cat([X_train_, X_train_], axis=0) y_train_ = torch.cat([y_train_, y_train_], axis=0) torch_dataset_train = torch.utils.data.TensorDataset(X_train_, y_train_) torch_dataset_test = torch.utils.data.TensorDataset(X_test, y_test) snn_dataset = SpikeDataset(torch_dataset_test, T=args.T) train_loader = torch.utils.data.DataLoader(torch_dataset_train, shuffle=True, batch_size=512) test_loader = torch.utils.data.DataLoader(torch_dataset_test, shuffle=False, batch_size=64) snn_loader = torch.utils.data.DataLoader(snn_dataset, shuffle=False, batch_size=16) model = Net().to(device) snn_model = CatNet(args.T).to(device) if args.resume != None: load_model(torch.load(args.resume), model) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) Acc = 0 for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(model, device, train_loader) Acc_ = test(model, device, test_loader) if Acc_ > Acc: Acc = Acc_ fuse_module(model) #torch.save(model.state_dict(), "eeg_1201_3_layers_final_1.pt") scheduler.step() print(Acc) fuse_module(model) test(model, device, test_loader) transfer_model(model, snn_model) test(snn_model, device, snn_loader)
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch Cifar10 LeNet Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1e-5, metavar='LR', help='learning rate (default: 1)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--resume', type=str, default=None, metavar='RESUME', help='Resume model from checkpoint') parser.add_argument('--T', type=int, default=60, metavar='N', help='SNN time window') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'batch_size': args.batch_size} if use_cuda: kwargs.update({'num_workers': 1, 'pin_memory': True, 'shuffle': True}, ) mean = [0.4913997551666284, 0.48215855929893703, 0.4465309133731618] std = [0.24703225141799082, 0.24348516474564, 0.26158783926049628] transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=6), transforms.RandomHorizontalFlip(), transforms.ToTensor(), AddGaussianNoise(std=0.01) ]) im_aug = transforms.Compose([ #transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.RandomRotation(10), transforms.RandomCrop(32, padding = 6), transforms.RandomHorizontalFlip(), transforms.ToTensor(), AddGaussianNoise(std=0.01) ]) transform_test = transforms.Compose([ transforms.ToTensor() #transforms.Normalize(mean, std) ]) trainset = datasets.CIFAR10( root='./data', train=True, download=True, transform=transform_train) for i in range(100): trainset = trainset + datasets.CIFAR10(root='./data', train=True, download=True, transform=im_aug) train_loader = torch.utils.data.DataLoader( trainset, batch_size=128, shuffle=True) testset = datasets.CIFAR10( root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False) snn_dataset = SpikeDataset(testset, T = args.T) snn_loader = torch.utils.data.DataLoader(snn_dataset, batch_size=10, shuffle=False) from models.vgg import VGG, CatVGG model = VGG('VGG19', clamp_max=1, quantize_bit=32).to(device) snn_model = CatVGG('VGG19', args.T).to(device) if args.resume != None: model.load_state_dict(torch.load(args.resume), strict=False) load_model(torch.load(args.resume), model) load_model(torch.load(args.resume), snn_model) optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) #test(model, device, train_loader) test(model, device, test_loader) #transfer_model(model, snn_model) #test(snn_model, device, snn_loader) if args.save_model: torch.save(model.state_dict(), "cifar_cnn_19.pt") scheduler.step() #test(model, device, train_loader) test(model, device, test_loader) transfer_model(model, snn_model) with torch.no_grad(): normalize_weight(snn_model.features, quantize_bit=8) test(snn_model, device, snn_loader) if args.save_model: torch.save(model.state_dict(), "cifar_cnn_19.pt")
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=14, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=3, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--resume', type=str, default=None, metavar='RESUME', help='Resume model from checkpoint') parser.add_argument('--T', type=int, default=40, metavar='N', help='SNN time window') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() #torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'batch_size': args.batch_size} if use_cuda: kwargs.update({ 'num_workers': 1, 'pin_memory': True, 'shuffle': True }, ) path = './ecg_data_normalize_smoke_2c.npz' #path = './all_0810_paper_smoke_normalize_01.npz' f = np.load(path) train_x, train_y = f['x_train'], f['y_train'] test_x, test_y = f['x_test'], f['y_test'] """ for i in range(len(train_x)): train_x[i] = minmaxscaler (train_x[i]) for i in range(len(test_x)): test_x[i] = minmaxscaler (test_x[i]) """ y_test_ = test_y X_train_ = torch.FloatTensor(train_x) print(X_train_.shape) X_train_ = X_train_.reshape(-1, 1, 180, 1) X_train_ = torch.clamp(X_train_, min=0, max=1) X_train_ = torch.div(torch.ceil(torch.mul(X_train_, 8)), 8) y_train_ = torch.FloatTensor(train_y) X_test = torch.FloatTensor(test_x) X_test = X_test.reshape(-1, 1, 180, 1) X_test = torch.clamp(X_test, min=0, max=1) X_test = torch.div(torch.ceil(torch.mul(X_test, 4)), 4) y_test = torch.FloatTensor(test_y) torch_dataset_train = torch.utils.data.TensorDataset(X_train_, y_train_) torch_dataset_test = torch.utils.data.TensorDataset(X_test, y_test) snn_dataset = SpikeDataset(torch_dataset_test, T=args.T) train_loader = torch.utils.data.DataLoader(torch_dataset_train, shuffle=True, batch_size=256 * 3) test_loader = torch.utils.data.DataLoader(torch_dataset_test, shuffle=False, batch_size=64) snn_loader = torch.utils.data.DataLoader(snn_dataset, shuffle=False, batch_size=1) model = Net().to(device) snn_model = CatNet(args.T).to(device) if args.resume != None: load_model(torch.load(args.resume), model) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) Acc = 0 for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(model, device, train_loader) Acc_ = test(model, device, test_loader) if Acc_ > Acc: Acc = Acc_ torch.save(model.state_dict(), "ecg2c_1.pt") scheduler.step() fuse_module(model) transfer_model(model, snn_model) test(snn_model, device, snn_loader)
def main(): # Training settings parser = argparse.ArgumentParser( description='PyTorch Cifar10 LeNet Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=50, metavar='N', help='number of epochs to train (default: 14)') parser.add_argument('--lr', type=float, default=1e-3, metavar='LR', help='learning rate (default: 1)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--resume', type=str, default=None, metavar='RESUME', help='Resume model from checkpoint') parser.add_argument('--T', type=int, default=1000, metavar='N', help='SNN time window') parser.add_argument('--k', type=int, default=100, metavar='N', help='Data augmentation') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'batch_size': args.batch_size} if use_cuda: kwargs.update({ 'num_workers': 1, 'pin_memory': True, 'shuffle': True }, ) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=6), transforms.RandomHorizontalFlip(), transforms.ToTensor(), AddGaussianNoise(std=0.01) ]) transform_test = transforms.Compose([transforms.ToTensor()]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) train_loader_ = torch.utils.data.DataLoader(trainset, batch_size=512, shuffle=True) for i in range(args.k): im_aug = transforms.Compose([ transforms.RandomRotation(10), transforms.RandomCrop(32, padding=6), transforms.RandomHorizontalFlip(), transforms.ToTensor(), AddGaussianNoise(std=0.01) ]) trainset = trainset + datasets.CIFAR10( root='./data', train=True, download=True, transform=im_aug) train_loader = torch.utils.data.DataLoader(trainset, batch_size=256 + 512, shuffle=True) testset = datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False) snn_dataset = SpikeDataset(testset, T=args.T) snn_loader = torch.utils.data.DataLoader(snn_dataset, batch_size=10, shuffle=False) from models.vgg import VGG, VGG_, CatVGG, CatVGG_ model = VGG('VGG16', clamp_max=1, quantize_bit=32, bias=False).to(device) snn_model = CatVGG('VGG16', args.T, bias=True).to(device) #Trainable pooling #model = VGG_('VGG19_', clamp_max=1, quantize_bit=32,bias =True).to(device) #snn_model = CatVGG_('VGG19_', args.T,bias =True).to(device) if args.resume != None: model.load_state_dict(torch.load(args.resume), strict=False) optimizer = optim.Adam(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) correct_ = 0 for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(model, device, train_loader_) correct = test(model, device, test_loader) if correct > correct_: correct_ = correct scheduler.step() model = fuse_bn_recursively(model) transfer_model(model, snn_model) with torch.no_grad(): normalize_weight(snn_model.features, quantize_bit=32) test(snn_model, device, snn_loader)