def __init__(self,
              path_key: str = "filepath",
              probs_key: str = "logits",
              activation: str = "Softmax",
              out_file: str = 'infer_pred.txt'):
     """
     Args:
         metric_names (List[str]): of metrics to print
             Make sure that they are in the same order that metrics
             are outputted by the meters in `meter_list`
         meter_list (list-like): List of meters.meter.Meter instances
             len(meter_list) == num_classes
         input_key (str): input key to use for metric calculation
             specifies our ``y_true``.
         output_key (str): output key to use for metric calculation;
             specifies our ``y_pred``
         class_names (List[str]): class names to display in the logs.
             If None, defaults to indices for each class, starting from 0.
         num_classes (int): Number of classes; must be > 1
         activation (str): An torch.nn activation applied to the logits.
             Must be one of ['none', 'Sigmoid', 'Softmax2d']
     """
     super().__init__(CallbackOrder.Logging)
     self.input_key = path_key
     self.output_key = probs_key
     self.activation = activation
     self.activation_fn = get_activation_fn(self.activation)
     self.preds = []
     self.out_file = out_file
Пример #2
0
 def __init__(
     self,
     metric_names: List[str],
     meter_list: List,
     input_key: str = "targets",
     output_key: str = "logits",
     class_names: List[str] = None,
     num_classes: int = 2,
     activation: str = "Sigmoid",
 ):
     """
     Args:
         metric_names: of metrics to print
             Make sure that they are in the same order that metrics
             are outputted by the meters in `meter_list`
         meter_list: List of meters.meter.Meter instances
             len(meter_list) == num_classes
         input_key: input key to use for metric calculation
             specifies our ``y_true``.
         output_key: output key to use for metric calculation;
             specifies our ``y_pred``
         class_names: class names to display in the logs.
             If None, defaults to indices for each class, starting from 0.
         num_classes: Number of classes; must be > 1
         activation: An torch.nn activation applied to the logits.
             Must be one of ['none', 'Sigmoid', 'Softmax2d']
     """
     super().__init__(CallbackOrder.metric)
     self.metric_names = metric_names
     self.meters = meter_list
     self.input_key = input_key
     self.output_key = output_key
     self.class_names = class_names
     self.num_classes = num_classes
     self.activation = activation
     self.activation_fn = get_activation_fn(self.activation)