Пример #1
0
def _bundle_trading_environment(bundle_data, environ):
    prefix, connstr = re.split(r'sqlite:///',
                               str(bundle_data.asset_finder.engine.url),
                               maxsplit=1)
    if prefix:
        raise ValueError("invalid url %r, must begin with 'sqlite:///'" %
                         str(bundle_data.asset_finder.engine.url))

    return TradingEnvironment(asset_db_path=connstr, environ=environ)
Пример #2
0
        def get_trading_env_and_data(bundles):
            env = data = None

            b = 'poloniex'
            if len(bundles) == 0:
                return env, data
            elif len(bundles) == 1:
                b = bundles[0]

            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            prefix, connstr = re.split(
                r'sqlite:///',
                str(bundle_data.asset_finder.engine.url),
                maxsplit=1,
            )
            if prefix:
                raise ValueError(
                    "invalid url %r, must begin with 'sqlite:///'" %
                    str(bundle_data.asset_finder.engine.url), )

            open_calendar = get_calendar('OPEN')

            env = TradingEnvironment(
                load=partial(load_crypto_market_data,
                             bundle=b,
                             bundle_data=bundle_data,
                             environ=environ),
                bm_symbol='USDT_BTC',
                trading_calendar=open_calendar,
                asset_db_path=connstr,
                environ=environ,
            )

            first_trading_day = bundle_data.minute_bar_reader.first_trading_day

            data = DataPortal(
                env.asset_finder,
                open_calendar,
                first_trading_day=first_trading_day,
                minute_reader=bundle_data.minute_bar_reader,
                five_minute_reader=bundle_data.five_minute_bar_reader,
                daily_reader=bundle_data.daily_bar_reader,
                adjustment_reader=bundle_data.adjustment_reader,
            )

            return env, data
Пример #3
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ, live, exchange, algo_namespace, base_currency, live_graph):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    mode = 'live' if live else 'backtest'
    log.info('running algo in {mode} mode'.format(mode=mode))

    if live and exchange is not None:
        exchange_name = exchange
        start = pd.Timestamp.utcnow()
        end = start + timedelta(minutes=1439)

        portfolio = get_algo_object(algo_name=algo_namespace,
                                    key='portfolio_{}'.format(exchange_name),
                                    environ=environ)
        if portfolio is None:
            portfolio = ExchangePortfolio(start_date=pd.Timestamp.utcnow())

        exchange_auth = get_exchange_auth(exchange_name)
        if exchange_name == 'bitfinex':
            exchange = Bitfinex(key=exchange_auth['key'],
                                secret=exchange_auth['secret'],
                                base_currency=base_currency,
                                portfolio=portfolio)
        elif exchange_name == 'bittrex':
            exchange = Bittrex(key=exchange_auth['key'],
                               secret=exchange_auth['secret'],
                               base_currency=base_currency,
                               portfolio=portfolio)
        else:
            raise NotImplementedError('exchange not supported: %s' %
                                      exchange_name)

    open_calendar = get_calendar('OPEN')
    sim_params = create_simulation_parameters(
        start=start,
        end=end,
        capital_base=capital_base,
        data_frequency=data_frequency,
        emission_rate=data_frequency,
    )

    if live and exchange is not None:
        env = TradingEnvironment(environ=environ,
                                 exchange_tz='UTC',
                                 asset_db_path=None)
        env.asset_finder = AssetFinderExchange(exchange)

        data = DataPortalExchange(exchange=exchange,
                                  asset_finder=env.asset_finder,
                                  trading_calendar=open_calendar,
                                  first_trading_day=pd.to_datetime('today',
                                                                   utc=True))
        choose_loader = None

        def fetch_capital_base(attempt_index=0):
            """
            Fetch the base currency amount required to bootstrap
            the algorithm against the exchange.

            The algorithm cannot continue without this value.

            :param attempt_index:
            :return capital_base: the amount of base currency available for
            trading
            """
            try:
                log.debug('retrieving capital base in {} to bootstrap '
                          'exchange {}'.format(base_currency, exchange_name))
                balances = exchange.get_balances()
            except ExchangeRequestError as e:
                if attempt_index < 20:
                    sleep(5)
                    return fetch_capital_base(attempt_index + 1)
                else:
                    raise ExchangeRequestErrorTooManyAttempts(
                        attempts=attempt_index, error=e)

            if base_currency in balances:
                return balances[base_currency]
            else:
                raise BaseCurrencyNotFoundError(base_currency=base_currency,
                                                exchange=exchange_name)

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=fetch_capital_base(),
            emission_rate='minute',
            data_frequency='minute')

    elif bundle is not None:
        bundles = bundle.split(',')

        def get_trading_env_and_data(bundles):
            env = data = None

            b = 'poloniex'
            if len(bundles) == 0:
                return env, data
            elif len(bundles) == 1:
                b = bundles[0]

            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            prefix, connstr = re.split(
                r'sqlite:///',
                str(bundle_data.asset_finder.engine.url),
                maxsplit=1,
            )
            if prefix:
                raise ValueError(
                    "invalid url %r, must begin with 'sqlite:///'" %
                    str(bundle_data.asset_finder.engine.url), )

            env = TradingEnvironment(
                load=partial(load_crypto_market_data,
                             bundle=b,
                             bundle_data=bundle_data,
                             environ=environ),
                bm_symbol='USDT_BTC',
                trading_calendar=open_calendar,
                asset_db_path=connstr,
                environ=environ,
            )

            first_trading_day = bundle_data.minute_bar_reader.first_trading_day

            data = DataPortal(
                env.asset_finder,
                open_calendar,
                first_trading_day=first_trading_day,
                minute_reader=bundle_data.minute_bar_reader,
                five_minute_reader=bundle_data.five_minute_bar_reader,
                daily_reader=bundle_data.daily_bar_reader,
                adjustment_reader=bundle_data.adjustment_reader,
            )

            return env, data

        def get_loader_for_bundle(b):
            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            if b == 'poloniex':
                return CryptoPricingLoader(
                    bundle_data,
                    data_frequency,
                    CryptoPricing,
                )
            elif b == 'quandl':
                return USEquityPricingLoader(
                    bundle_data,
                    data_frequency,
                    USEquityPricing,
                )
            raise ValueError("No PipelineLoader registered for bundle %s." % b)

        loaders = [get_loader_for_bundle(b) for b in bundles]
        env, data = get_trading_env_and_data(bundles)

        def choose_loader(column):
            for loader in loaders:
                if column in loader.columns:
                    return loader
            raise ValueError("No PipelineLoader registered for column %s." %
                             column)

    else:
        env = TradingEnvironment(environ=environ)
        choose_loader = None

    TradingAlgorithmClass = (partial(ExchangeTradingAlgorithm,
                                     exchange=exchange,
                                     algo_namespace=algo_namespace,
                                     live_graph=live_graph)
                             if live and exchange else TradingAlgorithm)

    perf = TradingAlgorithmClass(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=sim_params,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
Пример #4
0
def _run(handle_data,
         initialize,
         before_trading_start,
         analyze,
         algofile,
         algotext,
         defines,
         data_frequency,
         capital_base,
         data,
         bundle,
         bundle_timestamp,
         start,
         end,
         output,
         print_algo,
         local_namespace,
         environ,
         live,
         exchange,
         algo_namespace,
         quote_currency,
         live_graph,
         analyze_live,
         simulate_orders,
         auth_aliases,
         stats_output):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    # TODO: refactor for more granularity
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign,
                )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' % (name, e),
                )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    log.info('Catalyst version {}'.format(catalyst.__version__))
    if not DISABLE_ALPHA_WARNING:
        log.warn(ALPHA_WARNING_MESSAGE)
        # sleep(3)

    if live:
        if simulate_orders:
            mode = 'paper-trading'
        else:
            mode = 'live-trading'
    else:
        mode = 'backtest'

    log.info('running algo in {mode} mode'.format(mode=mode))

    exchange_name = exchange
    if exchange_name is None:
        raise ValueError('Please specify at least one exchange.')

    if isinstance(auth_aliases, string_types):
        aliases = auth_aliases.split(',')
        if len(aliases) < 2 or len(aliases) % 2 != 0:
            raise ValueError(
                'the `auth_aliases` parameter must contain an even list '
                'of comma-delimited values. For example, '
                '"binance,auth2" or "binance,auth2,bittrex,auth2".'
            )

        auth_aliases = dict(zip(aliases[::2], aliases[1::2]))

    exchange_list = [x.strip().lower() for x in exchange.split(',')]
    exchanges = dict()
    for name in exchange_list:
        if auth_aliases is not None and name in auth_aliases:
            auth_alias = auth_aliases[name]
        else:
            auth_alias = None

        exchanges[name] = get_exchange(
            exchange_name=name,
            quote_currency=quote_currency,
            must_authenticate=(live and not simulate_orders),
            skip_init=True,
            auth_alias=auth_alias,
        )

    open_calendar = get_calendar('OPEN')

    env = TradingEnvironment(
        load=partial(
            load_crypto_market_data,
            environ=environ,
            start_dt=start,
            end_dt=end
        ),
        environ=environ,
        exchange_tz='UTC',
        asset_db_path=None  # We don't need an asset db, we have exchanges
    )
    env.asset_finder = ExchangeAssetFinder(exchanges=exchanges)

    def choose_loader(column):
        bound_cols = TradingPairPricing.columns
        if column in bound_cols:
            return ExchangePricingLoader(data_frequency)
        raise ValueError(
            "No PipelineLoader registered for column %s." % column
        )

    if live:
        # TODO: fix the start data.
        # is_start checks if a start date was specified by user
        # needed for live clock
        is_start = True

        if start is None:
            start = pd.Timestamp.utcnow()
            is_start = False
        elif start:
            assert pd.Timestamp.utcnow() <= start, \
                "specified start date is in the past."
        elif start and end:
            assert start < end, "start date is later than end date."

        # TODO: fix the end data.
        # is_end checks if an end date was specified by user
        # needed for live clock
        is_end = True

        if end is None:
            end = start + timedelta(hours=8760)
            is_end = False

        data = DataPortalExchangeLive(
            exchanges=exchanges,
            asset_finder=env.asset_finder,
            trading_calendar=open_calendar,
            first_trading_day=pd.to_datetime('today', utc=True)
        )

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            emission_rate='minute',
            data_frequency='minute'
        )

        # TODO: use the constructor instead
        sim_params._arena = 'live'

        algorithm_class = partial(
            ExchangeTradingAlgorithmLive,
            exchanges=exchanges,
            algo_namespace=algo_namespace,
            live_graph=live_graph,
            simulate_orders=simulate_orders,
            stats_output=stats_output,
            analyze_live=analyze_live,
            start=start,
            is_start=is_start,
            end=end,
            is_end=is_end,
        )
    elif exchanges:
        # Removed the existing Poloniex fork to keep things simple
        # We can add back the complexity if required.

        # I don't think that we should have arbitrary price data bundles
        # Instead, we should center this data around exchanges.
        # We still need to support bundles for other misc data, but we
        # can handle this later.

        if (start and start != pd.tslib.normalize_date(start)) or \
                (end and end != pd.tslib.normalize_date(end)):
            # todo: add to Sim_Params the option to
            # start & end at specific times
            log.warn(
                "Catalyst currently starts and ends on the start and "
                "end of the dates specified, respectively. We hope to "
                "Modify this and support specific times in a future release."
            )

        data = DataPortalExchangeBacktest(
            exchange_names=[ex_name for ex_name in exchanges],
            asset_finder=None,
            trading_calendar=open_calendar,
            first_trading_day=start,
            last_available_session=end
        )

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            data_frequency=data_frequency,
            emission_rate=data_frequency,
        )

        algorithm_class = partial(
            ExchangeTradingAlgorithmBacktest,
            exchanges=exchanges
        )

    elif bundle is not None:
        bundle_data = load(
            bundle,
            environ,
            bundle_timestamp,
        )

        prefix, connstr = re.split(
            r'sqlite:///',
            str(bundle_data.asset_finder.engine.url),
            maxsplit=1,
        )
        if prefix:
            raise ValueError(
                "invalid url %r, must begin with 'sqlite:///'" %
                str(bundle_data.asset_finder.engine.url),
            )

        env = TradingEnvironment(asset_db_path=connstr, environ=environ)
        first_trading_day = \
            bundle_data.equity_minute_bar_reader.first_trading_day

        data = DataPortal(
            env.asset_finder, open_calendar,
            first_trading_day=first_trading_day,
            equity_minute_reader=bundle_data.equity_minute_bar_reader,
            equity_daily_reader=bundle_data.equity_daily_bar_reader,
            adjustment_reader=bundle_data.adjustment_reader,
        )

    perf = algorithm_class(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=sim_params,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }
    ).run(
        data,
        overwrite_sim_params=False,
    )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
Пример #5
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ, live, exchange, algo_namespace, base_currency, live_graph):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    mode = 'live' if live else 'backtest'
    log.info('running algo in {mode} mode'.format(mode=mode))

    exchange_name = exchange
    if exchange_name is None:
        raise ValueError('Please specify at least one exchange.')

    exchange_list = [x.strip().lower() for x in exchange.split(',')]

    exchanges = dict()
    for exchange_name in exchange_list:

        # Looking for the portfolio from the cache first
        portfolio = get_algo_object(algo_name=algo_namespace,
                                    key='portfolio_{}'.format(exchange_name),
                                    environ=environ)

        if portfolio is None:
            portfolio = ExchangePortfolio(start_date=pd.Timestamp.utcnow())

        # This corresponds to the json file containing api token info
        exchange_auth = get_exchange_auth(exchange_name)

        if live and (exchange_auth['key'] == ''
                     or exchange_auth['secret'] == ''):
            raise ExchangeAuthEmpty(exchange=exchange_name.title(),
                                    filename=os.path.join(
                                        get_exchange_folder(
                                            exchange_name, environ),
                                        'auth.json'))

        if exchange_name == 'bitfinex':
            exchanges[exchange_name] = Bitfinex(key=exchange_auth['key'],
                                                secret=exchange_auth['secret'],
                                                base_currency=base_currency,
                                                portfolio=portfolio)
        elif exchange_name == 'bittrex':
            exchanges[exchange_name] = Bittrex(key=exchange_auth['key'],
                                               secret=exchange_auth['secret'],
                                               base_currency=base_currency,
                                               portfolio=portfolio)
        elif exchange_name == 'poloniex':
            exchanges[exchange_name] = Poloniex(key=exchange_auth['key'],
                                                secret=exchange_auth['secret'],
                                                base_currency=base_currency,
                                                portfolio=portfolio)
        else:
            raise ExchangeNotFoundError(exchange_name=exchange_name)

    open_calendar = get_calendar('OPEN')

    env = TradingEnvironment(
        load=partial(load_crypto_market_data,
                     environ=environ,
                     start_dt=start,
                     end_dt=end),
        environ=environ,
        exchange_tz='UTC',
        asset_db_path=None  # We don't need an asset db, we have exchanges
    )
    env.asset_finder = AssetFinderExchange()
    choose_loader = None  # TODO: use the DataPortal for in the algorithm class for this

    if live:
        start = pd.Timestamp.utcnow()

        # TODO: fix the end data.
        end = start + timedelta(hours=8760)

        data = DataPortalExchangeLive(exchanges=exchanges,
                                      asset_finder=env.asset_finder,
                                      trading_calendar=open_calendar,
                                      first_trading_day=pd.to_datetime(
                                          'today', utc=True))

        def fetch_capital_base(exchange, attempt_index=0):
            """
            Fetch the base currency amount required to bootstrap
            the algorithm against the exchange.

            The algorithm cannot continue without this value.

            :param exchange: the targeted exchange
            :param attempt_index:
            :return capital_base: the amount of base currency available for
            trading
            """
            try:
                log.debug('retrieving capital base in {} to bootstrap '
                          'exchange {}'.format(base_currency, exchange_name))
                balances = exchange.get_balances()
            except ExchangeRequestError as e:
                if attempt_index < 20:
                    log.warn('could not retrieve balances on {}: {}'.format(
                        exchange.name, e))
                    sleep(5)
                    return fetch_capital_base(exchange, attempt_index + 1)

                else:
                    raise ExchangeRequestErrorTooManyAttempts(
                        attempts=attempt_index, error=e)

            if base_currency in balances:
                return balances[base_currency]
            else:
                raise BaseCurrencyNotFoundError(base_currency=base_currency,
                                                exchange=exchange_name)

        capital_base = 0
        for exchange_name in exchanges:
            exchange = exchanges[exchange_name]
            capital_base += fetch_capital_base(exchange)

        sim_params = create_simulation_parameters(start=start,
                                                  end=end,
                                                  capital_base=capital_base,
                                                  emission_rate='minute',
                                                  data_frequency='minute')

        # TODO: use the constructor instead
        sim_params._arena = 'live'

        algorithm_class = partial(ExchangeTradingAlgorithmLive,
                                  exchanges=exchanges,
                                  algo_namespace=algo_namespace,
                                  live_graph=live_graph)
    else:
        # Removed the existing Poloniex fork to keep things simple
        # We can add back the complexity if required.

        # I don't think that we should have arbitrary price data bundles
        # Instead, we should center this data around exchanges.
        # We still need to support bundles for other misc data, but we
        # can handle this later.

        data = DataPortalExchangeBacktest(exchanges=exchanges,
                                          asset_finder=None,
                                          trading_calendar=open_calendar,
                                          first_trading_day=start,
                                          last_available_session=end)

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            data_frequency=data_frequency,
            emission_rate=data_frequency,
        )

        algorithm_class = partial(ExchangeTradingAlgorithmBacktest,
                                  exchanges=exchanges)

    perf = algorithm_class(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=sim_params,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
Пример #6
0
 def __enter__(self):
     return TradingEnvironment(
         load=self._load,
         asset_db_path=super(tmp_trading_env, self).__enter__().engine,
     )
Пример #7
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    if bundle is not None:
        bundles = bundle.split(',')

        def get_trading_env_and_data(bundles):
            env = data = None

            b = 'poloniex'
            if len(bundles) == 0:
                return env, data
            elif len(bundles) == 1:
                b = bundles[0]

            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            prefix, connstr = re.split(
                r'sqlite:///',
                str(bundle_data.asset_finder.engine.url),
                maxsplit=1,
            )
            if prefix:
                raise ValueError(
                    "invalid url %r, must begin with 'sqlite:///'" %
                    str(bundle_data.asset_finder.engine.url), )

            open_calendar = get_calendar('OPEN')

            env = TradingEnvironment(
                load=partial(load_crypto_market_data, environ=environ),
                bm_symbol='USDT_BTC',
                trading_calendar=open_calendar,
                asset_db_path=connstr,
                environ=environ,
            )

            first_trading_day = bundle_data.minute_bar_reader.first_trading_day

            data = DataPortal(
                env.asset_finder,
                open_calendar,
                first_trading_day=first_trading_day,
                minute_reader=bundle_data.minute_bar_reader,
                five_minute_reader=bundle_data.five_minute_bar_reader,
                daily_reader=bundle_data.daily_bar_reader,
                adjustment_reader=bundle_data.adjustment_reader,
            )

            return env, data

        def get_loader_for_bundle(b):
            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            if b == 'poloniex':
                return CryptoPricingLoader(
                    bundle_data,
                    data_frequency,
                    CryptoPricing,
                )
            elif b == 'quandl':
                return USEquityPricingLoader(
                    bundle_data,
                    data_frequency,
                    USEquityPricing,
                )
            raise ValueError("No PipelineLoader registered for bundle %s." % b)

        loaders = [get_loader_for_bundle(b) for b in bundles]
        env, data = get_trading_env_and_data(bundles)

        def choose_loader(column):
            for loader in loaders:
                if column in loader.columns:
                    return loader
            raise ValueError("No PipelineLoader registered for column %s." %
                             column)

    else:
        env = TradingEnvironment(environ=environ)
        choose_loader = None

    perf = TradingAlgorithm(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            data_frequency=data_frequency,
            emission_rate=data_frequency,
        ),
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
Пример #8
0
def _build_algo_and_data(handle_data, initialize, before_trading_start,
                         analyze, algofile, algotext, defines, data_frequency,
                         capital_base, data, bundle, bundle_timestamp, start,
                         end, output, print_algo, local_namespace, environ,
                         live, exchange, algo_namespace, base_currency,
                         live_graph, analyze_live, simulate_orders,
                         stats_output):
    namespace = _build_namespace(algotext, local_namespace, defines)
    if algotext is not None:
        algotext = algofile.read()

    if print_algo:
        _pretty_print_code(algotext)

    mode = _mode(simulate_orders, live)
    log.info('running algo in {mode} mode'.format(mode=mode))

    exchanges = _build_exchanges_dict(exchange, live, simulate_orders,
                                      base_currency)

    open_calendar = get_calendar('OPEN')

    env = TradingEnvironment(
        load=partial(load_crypto_market_data,
                     environ=environ,
                     start_dt=start,
                     end_dt=end),
        environ=environ,
        exchange_tz='UTC',
        asset_db_path=None)  # We don't need an asset db, we have exchanges

    env.asset_finder = ExchangeAssetFinder(exchanges=exchanges)

    choose_loader = partial(_choose_loader, data_frequency)

    if live:
        start, end = _get_live_time_range()
        data_frequency = 'minute'  # TODO double check if this is the desired behavior

    sim_params = create_simulation_parameters(start=start,
                                              end=end,
                                              capital_base=capital_base,
                                              emission_rate=data_frequency,
                                              data_frequency=data_frequency)

    if algotext is None:
        algorithm_class_kwargs = {
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze
        }
    else:
        algorithm_class_kwargs = {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext
        }

    if live:
        return _build_live_algo_and_data(
            sim_params, exchanges, env, open_calendar, simulate_orders,
            algo_namespace, capital_base, live_graph, stats_output,
            analyze_live, base_currency, namespace, choose_loader,
            algorithm_class_kwargs)
    else:
        return _build_backtest_algo_and_data(exchanges, bundle, env, environ,
                                             bundle_timestamp, open_calendar,
                                             start, end, namespace,
                                             choose_loader, sim_params,
                                             algorithm_class_kwargs)
Пример #9
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ, live, exchange, algo_namespace, base_currency, live_graph,
         analyze_live, simulate_orders, stats_output):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    mode = 'paper-trading' if simulate_orders else 'live-trading' \
        if live else 'backtest'
    log.info('running algo in {mode} mode'.format(mode=mode))

    exchange_name = exchange
    if exchange_name is None:
        raise ValueError('Please specify at least one exchange.')

    exchange_list = [x.strip().lower() for x in exchange.split(',')]

    exchanges = dict()
    for exchange_name in exchange_list:
        exchanges[exchange_name] = get_exchange(
            exchange_name=exchange_name,
            base_currency=base_currency,
            must_authenticate=(live and not simulate_orders),
            skip_init=True,
        )

    open_calendar = get_calendar('OPEN')

    env = TradingEnvironment(
        load=partial(load_crypto_market_data,
                     environ=environ,
                     start_dt=start,
                     end_dt=end),
        environ=environ,
        exchange_tz='UTC',
        asset_db_path=None  # We don't need an asset db, we have exchanges
    )
    env.asset_finder = ExchangeAssetFinder(exchanges=exchanges)

    def choose_loader(column):
        bound_cols = TradingPairPricing.columns
        if column in bound_cols:
            return ExchangePricingLoader(data_frequency)
        raise ValueError("No PipelineLoader registered for column %s." %
                         column)

    if live:
        start = pd.Timestamp.utcnow()

        # TODO: fix the end data.
        end = start + timedelta(hours=8760)

        data = DataPortalExchangeLive(exchanges=exchanges,
                                      asset_finder=env.asset_finder,
                                      trading_calendar=open_calendar,
                                      first_trading_day=pd.to_datetime(
                                          'today', utc=True))

        def fetch_capital_base(exchange, attempt_index=0):
            """
            Fetch the base currency amount required to bootstrap
            the algorithm against the exchange.

            The algorithm cannot continue without this value.

            :param exchange: the targeted exchange
            :param attempt_index:
            :return capital_base: the amount of base currency available for
            trading
            """
            try:
                log.debug('retrieving capital base in {} to bootstrap '
                          'exchange {}'.format(base_currency, exchange_name))
                balances = exchange.get_balances()
            except ExchangeRequestError as e:
                if attempt_index < 20:
                    log.warn('could not retrieve balances on {}: {}'.format(
                        exchange.name, e))
                    sleep(5)
                    return fetch_capital_base(exchange, attempt_index + 1)

                else:
                    raise ExchangeRequestErrorTooManyAttempts(
                        attempts=attempt_index, error=e)

            if base_currency in balances:
                base_currency_available = balances[base_currency]['free']
                log.info(
                    'base currency available in the account: {} {}'.format(
                        base_currency_available, base_currency))

                return base_currency_available
            else:
                raise BaseCurrencyNotFoundError(base_currency=base_currency,
                                                exchange=exchange_name)

        if not simulate_orders:
            for exchange_name in exchanges:
                exchange = exchanges[exchange_name]
                balance = fetch_capital_base(exchange)

                if balance < capital_base:
                    raise NotEnoughCapitalError(
                        exchange=exchange_name,
                        base_currency=base_currency,
                        balance=balance,
                        capital_base=capital_base,
                    )

        sim_params = create_simulation_parameters(start=start,
                                                  end=end,
                                                  capital_base=capital_base,
                                                  emission_rate='minute',
                                                  data_frequency='minute')

        # TODO: use the constructor instead
        sim_params._arena = 'live'

        algorithm_class = partial(
            ExchangeTradingAlgorithmLive,
            exchanges=exchanges,
            algo_namespace=algo_namespace,
            live_graph=live_graph,
            simulate_orders=simulate_orders,
            stats_output=stats_output,
            analyze_live=analyze_live,
        )
    elif exchanges:
        # Removed the existing Poloniex fork to keep things simple
        # We can add back the complexity if required.

        # I don't think that we should have arbitrary price data bundles
        # Instead, we should center this data around exchanges.
        # We still need to support bundles for other misc data, but we
        # can handle this later.

        data = DataPortalExchangeBacktest(
            exchange_names=[exchange_name for exchange_name in exchanges],
            asset_finder=None,
            trading_calendar=open_calendar,
            first_trading_day=start,
            last_available_session=end)

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            data_frequency=data_frequency,
            emission_rate=data_frequency,
        )

        algorithm_class = partial(ExchangeTradingAlgorithmBacktest,
                                  exchanges=exchanges)

    elif bundle is not None:
        bundle_data = load(
            bundle,
            environ,
            bundle_timestamp,
        )

        prefix, connstr = re.split(
            r'sqlite:///',
            str(bundle_data.asset_finder.engine.url),
            maxsplit=1,
        )
        if prefix:
            raise ValueError(
                "invalid url %r, must begin with 'sqlite:///'" %
                str(bundle_data.asset_finder.engine.url), )

        env = TradingEnvironment(asset_db_path=connstr, environ=environ)
        first_trading_day = \
            bundle_data.equity_minute_bar_reader.first_trading_day

        data = DataPortal(
            env.asset_finder,
            open_calendar,
            first_trading_day=first_trading_day,
            equity_minute_reader=bundle_data.equity_minute_bar_reader,
            equity_daily_reader=bundle_data.equity_daily_bar_reader,
            adjustment_reader=bundle_data.adjustment_reader,
        )

    perf = algorithm_class(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=sim_params,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
Пример #10
0
def generate_minute_test_data(first_day,
                              last_day,
                              starting_open,
                              starting_volume,
                              multipliers_list,
                              path):
    """
    Utility method to generate fake minute-level CSV data.
    :param first_day: first trading day
    :param last_day: last trading day
    :param starting_open: first open value, raw value.
    :param starting_volume: first volume value, raw value.
    :param multipliers_list: ordered list of pd.Timestamp -> float, one per day
            in the range
    :param path: path to save the CSV
    :return: None
    """

    full_minutes = BcolzMinuteBarWriter.full_minutes_for_days(
        first_day, last_day)
    minutes_count = len(full_minutes)

    minutes = TradingEnvironment.instance().minutes_for_days_in_range(
        first_day, last_day)

    o = np.zeros(minutes_count, dtype=np.uint32)
    h = np.zeros(minutes_count, dtype=np.uint32)
    l = np.zeros(minutes_count, dtype=np.uint32)
    c = np.zeros(minutes_count, dtype=np.uint32)
    v = np.zeros(minutes_count, dtype=np.uint32)

    last_open = starting_open * 1000
    last_volume = starting_volume

    for minute in minutes:
        # ugly, but works
        idx = full_minutes.searchsorted(minute)

        new_open = last_open + round((random.random() * 5), 2)

        o[idx] = new_open
        h[idx] = new_open + round((random.random() * 10000), 2)
        l[idx] = new_open - round((random.random() * 10000),  2)
        c[idx] = (h[idx] + l[idx]) / 2
        v[idx] = int(last_volume + (random.randrange(-10, 10) * 1e4))

        last_open = o[idx]
        last_volume = v[idx]

    # now deal with multipliers
    if len(multipliers_list) > 0:
        for idx, multiplier_info in enumerate(multipliers_list):
            start_idx = idx * 390
            end_idx = start_idx + 390

            # dividing by the multipler because we're going backwards
            # and generating the original data that will then be adjusted.
            o[start_idx:end_idx] /= multiplier_info[1]
            h[start_idx:end_idx] /= multiplier_info[1]
            l[start_idx:end_idx] /= multiplier_info[1]
            c[start_idx:end_idx] /= multiplier_info[1]
            v[start_idx:end_idx] *= multiplier_info[1]

    df = pd.DataFrame({
        "open": o,
        "high": h,
        "low": l,
        "close": c,
        "volume": v
    }, columns=[
        "open",
        "high",
        "low",
        "close",
        "volume"
    ], index=minutes)

    df.to_csv(path, index_label="minute")
Пример #11
0
def generate_daily_test_data(first_day,
                             last_day,
                             starting_open,
                             starting_volume,
                             multipliers_list,
                             path):

    days = TradingEnvironment.instance().days_in_range(first_day, last_day)

    days_count = len(days)
    o = np.zeros(days_count, dtype=np.uint32)
    h = np.zeros(days_count, dtype=np.uint32)
    l = np.zeros(days_count, dtype=np.uint32)
    c = np.zeros(days_count, dtype=np.uint32)
    v = np.zeros(days_count, dtype=np.uint32)

    last_open = starting_open * 1000
    last_volume = starting_volume

    for idx in range(days_count):
        new_open = last_open + round((random.random() * 5), 2)

        o[idx] = new_open
        h[idx] = new_open + round((random.random() * 10000), 2)
        l[idx] = new_open - round((random.random() * 10000),  2)
        c[idx] = (h[idx] + l[idx]) / 2
        v[idx] = int(last_volume + (random.randrange(-10, 10) * 1e4))

        last_open = o[idx]
        last_volume = v[idx]

    # now deal with multipliers
    if len(multipliers_list) > 0:
        range_start = 0

        for multiplier_info in multipliers_list:
            range_end = days.searchsorted(multiplier_info[0])

            # dividing by the multiplier because we're going backwards
            # and generating the original data that will then be adjusted.
            o[range_start:range_end] /= multiplier_info[1]
            h[range_start:range_end] /= multiplier_info[1]
            l[range_start:range_end] /= multiplier_info[1]
            c[range_start:range_end] /= multiplier_info[1]
            v[range_start:range_end] *= multiplier_info[1]

            range_start = range_end

    df = pd.DataFrame({
        "open": o,
        "high": h,
        "low": l,
        "close": c,
        "volume": v
    }, columns=[
        "open",
        "high",
        "low",
        "close",
        "volume"
    ], index=days)

    df.to_csv(path, index_label="day")