Пример #1
0
def initialize_proxy():
    """
    Initialize user defined proxy settings, read proxy setting from config file.
    Populates value to 3rd-party libraries using proper environment variables.
    """
    from os import environ

    http_proxy_config = get_config_value(_CONFIG_KEY_HTTP_PROXY)
    https_proxy_config = get_config_value(_CONFIG_KEY_HTTPS_PROXY)
    if http_proxy_config:
        environ['http_proxy'] = http_proxy_config
    if https_proxy_config:
        environ['https_proxy'] = https_proxy_config
Пример #2
0
    def _make_local(self,
                    local_ds: LocalDataSource,
                    time_range: TimeRangeLike.TYPE = None,
                    region: PolygonLike.TYPE = None,
                    var_names: VarNamesLike.TYPE = None,
                    monitor: Monitor = Monitor.NONE):

        local_id = local_ds.id
        time_range = TimeRangeLike.convert(time_range)
        region = PolygonLike.convert(region)
        var_names = VarNamesLike.convert(var_names)

        time_range, region, var_names = self._apply_make_local_fixes(
            time_range, region, var_names)

        compression_level = get_config_value('NETCDF_COMPRESSION_LEVEL',
                                             NETCDF_COMPRESSION_LEVEL)
        compression_enabled = True if compression_level > 0 else False

        do_update_of_verified_time_coverage_start_once = True
        verified_time_coverage_start = None
        verified_time_coverage_end = None

        encoding_update = dict()
        if compression_enabled:
            encoding_update.update({
                'zlib': True,
                'complevel': compression_level
            })

        if region or var_names:
            protocol = _ODP_PROTOCOL_OPENDAP
        else:
            protocol = _ODP_PROTOCOL_HTTP

        local_path = os.path.join(local_ds.data_store.data_store_path,
                                  local_id)
        if not os.path.exists(local_path):
            os.makedirs(local_path)

        selected_file_list = self._find_files(time_range)
        if not selected_file_list:
            msg = 'CCI Open Data Portal data source "{}"\ndoes not seem to have any datasets'.format(
                self.id)
            if time_range is not None:
                msg += ' in given time range {}'.format(
                    TimeRangeLike.format(time_range))
            raise DataAccessError(msg)
        try:
            if protocol == _ODP_PROTOCOL_OPENDAP:

                do_update_of_variables_meta_info_once = True
                do_update_of_region_meta_info_once = True

                files = self._get_urls_list(selected_file_list, protocol)
                monitor.start('Sync ' + self.id, total_work=len(files))
                for idx, dataset_uri in enumerate(files):
                    child_monitor = monitor.child(work=1)

                    file_name = os.path.basename(dataset_uri)
                    local_filepath = os.path.join(local_path, file_name)

                    time_coverage_start = selected_file_list[idx][1]
                    time_coverage_end = selected_file_list[idx][2]

                    try:
                        child_monitor.start(label=file_name, total_work=1)

                        remote_dataset = xr.open_dataset(dataset_uri)

                        if var_names:
                            remote_dataset = remote_dataset.drop([
                                var_name for var_name in
                                remote_dataset.data_vars.keys()
                                if var_name not in var_names
                            ])

                        if region:
                            remote_dataset = normalize_impl(remote_dataset)
                            remote_dataset = subset_spatial_impl(
                                remote_dataset, region)
                            geo_lon_min, geo_lat_min, geo_lon_max, geo_lat_max = region.bounds

                            remote_dataset.attrs[
                                'geospatial_lat_min'] = geo_lat_min
                            remote_dataset.attrs[
                                'geospatial_lat_max'] = geo_lat_max
                            remote_dataset.attrs[
                                'geospatial_lon_min'] = geo_lon_min
                            remote_dataset.attrs[
                                'geospatial_lon_max'] = geo_lon_max
                            if do_update_of_region_meta_info_once:
                                local_ds.meta_info['bbox_maxx'] = geo_lon_max
                                local_ds.meta_info['bbox_minx'] = geo_lon_min
                                local_ds.meta_info['bbox_maxy'] = geo_lat_max
                                local_ds.meta_info['bbox_miny'] = geo_lat_min
                                do_update_of_region_meta_info_once = False

                        if compression_enabled:
                            for sel_var_name in remote_dataset.variables.keys(
                            ):
                                remote_dataset.variables.get(
                                    sel_var_name).encoding.update(
                                        encoding_update)

                        remote_dataset.to_netcdf(local_filepath)

                        child_monitor.progress(work=1,
                                               msg=str(time_coverage_start))
                    finally:
                        if do_update_of_variables_meta_info_once:
                            variables_info = local_ds.meta_info.get(
                                'variables', [])
                            local_ds.meta_info['variables'] = [
                                var_info for var_info in variables_info
                                if var_info.get('name') in remote_dataset.
                                variables.keys() and var_info.get(
                                    'name') not in remote_dataset.dims.keys()
                            ]
                            do_update_of_variables_meta_info_once = False

                        local_ds.add_dataset(
                            os.path.join(local_id, file_name),
                            (time_coverage_start, time_coverage_end))

                        if do_update_of_verified_time_coverage_start_once:
                            verified_time_coverage_start = time_coverage_start
                            do_update_of_verified_time_coverage_start_once = False
                        verified_time_coverage_end = time_coverage_end
                    child_monitor.done()
            else:
                outdated_file_list = []
                for file_rec in selected_file_list:
                    filename, _, _, file_size, url = file_rec
                    dataset_file = os.path.join(local_path, filename)
                    # todo (forman, 20160915): must perform better checks on dataset_file if it is...
                    # ... outdated or incomplete or corrupted.
                    # JSON also includes "checksum" and "checksum_type" fields.
                    if not os.path.isfile(dataset_file) or (
                            file_size
                            and os.path.getsize(dataset_file) != file_size):
                        outdated_file_list.append(file_rec)

                if outdated_file_list:
                    with monitor.starting('Sync ' + self.id,
                                          len(outdated_file_list)):
                        bytes_to_download = sum(
                            [file_rec[3] for file_rec in outdated_file_list])
                        dl_stat = _DownloadStatistics(bytes_to_download)

                        file_number = 1

                        for filename, coverage_from, coverage_to, file_size, url in outdated_file_list:
                            dataset_file = os.path.join(local_path, filename)
                            sub_monitor = monitor.child(work=1.0)

                            # noinspection PyUnusedLocal
                            def reporthook(block_number, read_size,
                                           total_file_size):
                                dl_stat.handle_chunk(read_size)
                                sub_monitor.progress(work=read_size,
                                                     msg=str(dl_stat))

                            sub_monitor_msg = "file %d of %d" % (
                                file_number, len(outdated_file_list))
                            with sub_monitor.starting(sub_monitor_msg,
                                                      file_size):
                                urllib.request.urlretrieve(
                                    url[protocol],
                                    filename=dataset_file,
                                    reporthook=reporthook)
                            file_number += 1
                            local_ds.add_dataset(
                                os.path.join(local_id, filename),
                                (coverage_from, coverage_to))

                            if do_update_of_verified_time_coverage_start_once:
                                verified_time_coverage_start = coverage_from
                                do_update_of_verified_time_coverage_start_once = False
                            verified_time_coverage_end = coverage_to
        except OSError as e:
            raise DataAccessError(
                "Copying remote data source failed: {}".format(e),
                source=self) from e
        local_ds.meta_info['temporal_coverage_start'] = TimeLike.format(
            verified_time_coverage_start)
        local_ds.meta_info['temporal_coverage_end'] = TimeLike.format(
            verified_time_coverage_end)
        local_ds.save(True)
Пример #3
0
    def _make_local(self,
                    local_ds: 'LocalDataSource',
                    time_range: TimeRangeLike.TYPE = None,
                    region: PolygonLike.TYPE = None,
                    var_names: VarNamesLike.TYPE = None,
                    monitor: Monitor = Monitor.NONE):

        local_id = local_ds.id

        time_range = TimeRangeLike.convert(time_range) if time_range else None
        region = PolygonLike.convert(region) if region else None
        var_names = VarNamesLike.convert(
            var_names) if var_names else None  # type: Sequence

        compression_level = get_config_value('NETCDF_COMPRESSION_LEVEL',
                                             NETCDF_COMPRESSION_LEVEL)
        compression_enabled = True if compression_level > 0 else False

        encoding_update = dict()
        if compression_enabled:
            encoding_update.update({
                'zlib': True,
                'complevel': compression_level
            })

        local_path = os.path.join(local_ds.data_store.data_store_path,
                                  local_id)
        data_store_path = local_ds.data_store.data_store_path
        if not os.path.exists(local_path):
            os.makedirs(local_path)

        monitor.start("Sync " + self.id, total_work=len(self._files.items()))
        for remote_relative_filepath, coverage in self._files.items():
            child_monitor = monitor.child(work=1)

            file_name = os.path.basename(remote_relative_filepath)
            local_relative_filepath = os.path.join(local_id, file_name)
            local_absolute_filepath = os.path.join(data_store_path,
                                                   local_relative_filepath)

            remote_absolute_filepath = os.path.join(
                self._data_store.data_store_path, remote_relative_filepath)

            if isinstance(coverage, Tuple):

                time_coverage_start = coverage[0]
                time_coverage_end = coverage[1]

                if not time_range or time_coverage_start >= time_range[
                        0] and time_coverage_end <= time_range[1]:
                    if region or var_names:

                        do_update_of_variables_meta_info_once = True
                        do_update_of_region_meta_info_once = True

                        try:
                            remote_dataset = xr.open_dataset(
                                remote_absolute_filepath)

                            if var_names:
                                remote_dataset = remote_dataset.drop([
                                    var_name for var_name in
                                    remote_dataset.data_vars.keys()
                                    if var_name not in var_names
                                ])

                            if region:
                                remote_dataset = normalize_impl(remote_dataset)
                                remote_dataset = subset_spatial_impl(
                                    remote_dataset, region)
                                geo_lon_min, geo_lat_min, geo_lon_max, geo_lat_max = region.bounds

                                remote_dataset.attrs[
                                    'geospatial_lat_min'] = geo_lat_min
                                remote_dataset.attrs[
                                    'geospatial_lat_max'] = geo_lat_max
                                remote_dataset.attrs[
                                    'geospatial_lon_min'] = geo_lon_min
                                remote_dataset.attrs[
                                    'geospatial_lon_max'] = geo_lon_max
                                if do_update_of_region_meta_info_once:
                                    local_ds.meta_info[
                                        'bbox_maxx'] = geo_lon_max
                                    local_ds.meta_info[
                                        'bbox_minx'] = geo_lon_min
                                    local_ds.meta_info[
                                        'bbox_maxy'] = geo_lat_max
                                    local_ds.meta_info[
                                        'bbox_miny'] = geo_lat_min
                                    do_update_of_region_meta_info_once = False

                            if compression_enabled:
                                for sel_var_name in remote_dataset.variables.keys(
                                ):
                                    remote_dataset.variables.get(
                                        sel_var_name).encoding.update(
                                            encoding_update)

                            remote_dataset.to_netcdf(local_absolute_filepath)

                            child_monitor.progress(
                                work=1, msg=str(time_coverage_start))
                        finally:
                            if do_update_of_variables_meta_info_once:
                                variables_info = local_ds.meta_info.get(
                                    'variables', [])
                                local_ds.meta_info['variables'] = [
                                    var_info for var_info in variables_info
                                    if var_info.get('name') in remote_dataset.
                                    variables.keys() and var_info.get('name')
                                    not in remote_dataset.dims.keys()
                                ]
                                do_update_of_variables_meta_info_once = False

                            local_ds.add_dataset(
                                os.path.join(local_id, file_name),
                                (time_coverage_start, time_coverage_end))

                        child_monitor.done()
                    else:
                        shutil.copy(remote_absolute_filepath,
                                    local_absolute_filepath)
                        local_ds.add_dataset(
                            local_relative_filepath,
                            (time_coverage_start, time_coverage_end))
                        child_monitor.done()
        monitor.done()
        return local_id
Пример #4
0
    def _make_local(self,
                    local_ds: 'LocalDataSource',
                    time_range: TimeRangeLike.TYPE = None,
                    region: PolygonLike.TYPE = None,
                    var_names: VarNamesLike.TYPE = None,
                    monitor: Monitor = Monitor.NONE):

        # local_name = local_ds.name
        local_id = local_ds.name

        time_range = TimeRangeLike.convert(time_range) if time_range else None
        region = PolygonLike.convert(region) if region else None
        var_names = VarNamesLike.convert(
            var_names) if var_names else None  # type: Sequence

        compression_level = get_config_value('NETCDF_COMPRESSION_LEVEL',
                                             NETCDF_COMPRESSION_LEVEL)
        compression_enabled = True if compression_level > 0 else False

        encoding_update = dict()
        if compression_enabled:
            encoding_update.update({
                'zlib': True,
                'complevel': compression_level
            })

        local_path = os.path.join(local_ds.data_store.data_store_path,
                                  local_id)
        data_store_path = local_ds.data_store.data_store_path
        if not os.path.exists(local_path):
            os.makedirs(local_path)

        monitor.start("Sync " + self.name, total_work=len(self._files.items()))
        for remote_relative_filepath, coverage in self._files.items():
            child_monitor = monitor.child(work=1)

            file_name = os.path.basename(remote_relative_filepath)
            local_relative_filepath = os.path.join(local_id, file_name)
            local_absolute_filepath = os.path.join(data_store_path,
                                                   local_relative_filepath)

            remote_absolute_filepath = os.path.join(
                self._data_store.data_store_path, remote_relative_filepath)

            if isinstance(coverage, Tuple):

                time_coverage_start = coverage[0]
                time_coverage_end = coverage[1]

                remote_netcdf = None
                local_netcdf = None
                if not time_range or time_coverage_start >= time_range[
                        0] and time_coverage_end <= time_range[1]:
                    if region or var_names:
                        try:
                            remote_netcdf = NetCDF4DataStore(
                                remote_absolute_filepath)

                            local_netcdf = NetCDF4DataStore(
                                local_absolute_filepath,
                                mode='w',
                                persist=True)
                            local_netcdf.set_attributes(
                                remote_netcdf.get_attrs())

                            remote_dataset = xr.Dataset.load_store(
                                remote_netcdf)

                            process_region = False
                            if region:
                                geo_lat_min = self._get_harmonized_coordinate_value(
                                    remote_dataset.attrs, 'geospatial_lat_min')
                                geo_lat_max = self._get_harmonized_coordinate_value(
                                    remote_dataset.attrs, 'geospatial_lat_max')
                                geo_lon_min = self._get_harmonized_coordinate_value(
                                    remote_dataset.attrs, 'geospatial_lon_min')
                                geo_lon_max = self._get_harmonized_coordinate_value(
                                    remote_dataset.attrs, 'geospatial_lon_max')

                                geo_lat_res = self._get_harmonized_coordinate_value(
                                    remote_dataset.attrs,
                                    'geospatial_lon_resolution')
                                geo_lon_res = self._get_harmonized_coordinate_value(
                                    remote_dataset.attrs,
                                    'geospatial_lat_resolution')
                                if not (isnan(geo_lat_min)
                                        or isnan(geo_lat_max)
                                        or isnan(geo_lon_min)
                                        or isnan(geo_lon_max)
                                        or isnan(geo_lat_res)
                                        or isnan(geo_lon_res)):
                                    process_region = True

                                    [lat_min, lon_min, lat_max,
                                     lon_max] = region.bounds

                                    lat_min = floor(
                                        (lat_min - geo_lat_min) / geo_lat_res)
                                    lat_max = ceil(
                                        (lat_max - geo_lat_min) / geo_lat_res)
                                    lon_min = floor(
                                        (lon_min - geo_lon_min) / geo_lon_res)
                                    lon_max = ceil(
                                        (lon_max - geo_lon_min) / geo_lon_res)

                                    # TODO (kbernat): check why dataset.sel fails!
                                    remote_dataset = remote_dataset.isel(
                                        drop=False,
                                        lat=slice(lat_min, lat_max),
                                        lon=slice(lon_min, lon_max))

                                    geo_lat_max = lat_max * geo_lat_res + geo_lat_min
                                    geo_lat_min += lat_min * geo_lat_res
                                    geo_lon_max = lon_max * geo_lon_res + geo_lon_min
                                    geo_lon_min += lon_min * geo_lon_res

                            if not var_names:
                                var_names = [
                                    var_name for var_name in
                                    remote_netcdf.variables.keys()
                                ]
                            var_names.extend([
                                coord_name
                                for coord_name in remote_dataset.coords.keys()
                                if coord_name not in var_names
                            ])
                            child_monitor.start(label=file_name,
                                                total_work=len(var_names))
                            for sel_var_name in var_names:
                                var_dataset = remote_dataset.drop([
                                    var_name for var_name in
                                    remote_dataset.variables.keys()
                                    if var_name != sel_var_name
                                ])
                                if compression_enabled:
                                    var_dataset.variables.get(
                                        sel_var_name).encoding.update(
                                            encoding_update)
                                local_netcdf.store_dataset(var_dataset)
                                child_monitor.progress(work=1,
                                                       msg=sel_var_name)
                            if process_region:
                                local_netcdf.set_attribute(
                                    'geospatial_lat_min', geo_lat_min)
                                local_netcdf.set_attribute(
                                    'geospatial_lat_max', geo_lat_max)
                                local_netcdf.set_attribute(
                                    'geospatial_lon_min', geo_lon_min)
                                local_netcdf.set_attribute(
                                    'geospatial_lon_max', geo_lon_max)
                        finally:
                            if remote_netcdf:
                                remote_netcdf.close()
                            if local_netcdf:
                                local_netcdf.close()
                                local_ds.add_dataset(
                                    local_relative_filepath,
                                    (time_coverage_start, time_coverage_end))
                        child_monitor.done()
                    else:
                        shutil.copy(remote_absolute_filepath,
                                    local_absolute_filepath)
                        local_ds.add_dataset(
                            local_relative_filepath,
                            (time_coverage_start, time_coverage_end))
                        child_monitor.done()
        monitor.done()
        return local_id
Пример #5
0
    def _make_local(self,
                    local_ds: 'LocalDataSource',
                    time_range: TimeRangeLike.TYPE = None,
                    region: PolygonLike.TYPE = None,
                    var_names: VarNamesLike.TYPE = None,
                    monitor: Monitor = Monitor.NONE):

        local_id = local_ds.id

        time_range = TimeRangeLike.convert(time_range) if time_range else None
        var_names = VarNamesLike.convert(var_names) if var_names else None  # type: Sequence

        compression_level = get_config_value('NETCDF_COMPRESSION_LEVEL', NETCDF_COMPRESSION_LEVEL)
        compression_enabled = True if compression_level > 0 else False

        encoding_update = dict()
        if compression_enabled:
            encoding_update.update({'zlib': True, 'complevel': compression_level})

        local_path = os.path.join(local_ds.data_store.data_store_path, local_id)
        data_store_path = local_ds.data_store.data_store_path
        if not os.path.exists(local_path):
            os.makedirs(local_path)

        monitor.start("Sync " + self.id, total_work=len(self._files.items()))
        for remote_relative_filepath, coverage in self._files.items():
            child_monitor = monitor.child(work=1)

            file_name = os.path.basename(remote_relative_filepath)
            local_relative_filepath = os.path.join(local_id, file_name)
            local_absolute_filepath = os.path.join(data_store_path, local_relative_filepath)

            remote_absolute_filepath = os.path.join(self._data_store.data_store_path, remote_relative_filepath)

            if isinstance(coverage, Tuple):

                time_coverage_start = coverage[0]
                time_coverage_end = coverage[1]

                if not time_range or time_coverage_start >= time_range[0] and time_coverage_end <= time_range[1]:
                    if region or var_names:

                        do_update_of_variables_meta_info_once = True
                        do_update_of_region_meta_info_once = True

                        remote_dataset = None
                        try:
                            remote_dataset = xr.open_dataset(remote_absolute_filepath)

                            if var_names:
                                remote_dataset = remote_dataset.drop(
                                    [var_name for var_name in remote_dataset.data_vars.keys()
                                     if var_name not in var_names])

                            if region:
                                remote_dataset = normalize_impl(remote_dataset)
                                remote_dataset = adjust_spatial_attrs_impl(subset_spatial_impl(remote_dataset, region),
                                                                           allow_point=False)

                                if do_update_of_region_meta_info_once:
                                    # subset_spatial_impl
                                    local_ds.meta_info['bbox_maxx'] = remote_dataset.attrs['geospatial_lon_max']
                                    local_ds.meta_info['bbox_minx'] = remote_dataset.attrs['geospatial_lon_min']
                                    local_ds.meta_info['bbox_maxy'] = remote_dataset.attrs['geospatial_lat_max']
                                    local_ds.meta_info['bbox_miny'] = remote_dataset.attrs['geospatial_lat_min']
                                    do_update_of_region_meta_info_once = False

                            if compression_enabled:
                                for sel_var_name in remote_dataset.variables.keys():
                                    remote_dataset.variables.get(sel_var_name).encoding.update(encoding_update)

                            remote_dataset.to_netcdf(local_absolute_filepath)

                            child_monitor.progress(work=1, msg=str(time_coverage_start))
                        finally:
                            if do_update_of_variables_meta_info_once and remote_dataset is not None:
                                variables_info = local_ds.meta_info.get('variables', [])
                                local_ds.meta_info['variables'] = [var_info for var_info in variables_info
                                                                   if var_info.get('name')
                                                                   in remote_dataset.variables.keys()
                                                                   and var_info.get('name')
                                                                   not in remote_dataset.dims.keys()]
                                # noinspection PyUnusedLocal
                                do_update_of_variables_meta_info_once = False

                            local_ds.add_dataset(os.path.join(local_id, file_name),
                                                 (time_coverage_start, time_coverage_end))

                        child_monitor.done()
                    else:
                        shutil.copy(remote_absolute_filepath, local_absolute_filepath)
                        local_ds.add_dataset(local_relative_filepath, (time_coverage_start, time_coverage_end))
                        child_monitor.done()
        monitor.done()
        return local_id
Пример #6
0
    def _make_local(self,
                    local_ds: LocalDataSource,
                    time_range: TimeRangeLike.TYPE = None,
                    region: PolygonLike.TYPE = None,
                    var_names: VarNamesLike.TYPE = None,
                    monitor: Monitor = Monitor.NONE):

        # local_name = local_ds.name
        local_id = local_ds.name

        time_range = TimeRangeLike.convert(time_range) if time_range else None
        region = PolygonLike.convert(region) if region else None
        var_names = VarNamesLike.convert(
            var_names) if var_names else None  # type: Sequence

        compression_level = get_config_value('NETCDF_COMPRESSION_LEVEL',
                                             NETCDF_COMPRESSION_LEVEL)
        compression_enabled = True if compression_level > 0 else False

        encoding_update = dict()
        if compression_enabled:
            encoding_update.update({
                'zlib': True,
                'complevel': compression_level
            })

        if region or var_names:
            protocol = _ODP_PROTOCOL_OPENDAP
        else:
            protocol = _ODP_PROTOCOL_HTTP

        local_path = os.path.join(local_ds.data_store.data_store_path,
                                  local_id)
        if not os.path.exists(local_path):
            os.makedirs(local_path)

        selected_file_list = self._find_files(time_range)

        if protocol == _ODP_PROTOCOL_OPENDAP:

            files = self._get_urls_list(selected_file_list, protocol)
            monitor.start('Sync ' + self.name, total_work=len(files))
            for idx, dataset_uri in enumerate(files):
                child_monitor = monitor.child(work=1)

                file_name = os.path.basename(dataset_uri)
                local_filepath = os.path.join(local_path, file_name)

                time_coverage_start = selected_file_list[idx][1]
                time_coverage_end = selected_file_list[idx][2]

                remote_netcdf = None
                local_netcdf = None
                try:
                    remote_netcdf = NetCDF4DataStore(dataset_uri)

                    local_netcdf = NetCDF4DataStore(local_filepath,
                                                    mode='w',
                                                    persist=True)
                    local_netcdf.set_attributes(remote_netcdf.get_attrs())

                    remote_dataset = xr.Dataset.load_store(remote_netcdf)

                    process_region = False
                    if region:
                        geo_lat_min = self._get_harmonized_coordinate_value(
                            remote_dataset.attrs, 'geospatial_lat_min')
                        geo_lat_max = self._get_harmonized_coordinate_value(
                            remote_dataset.attrs, 'geospatial_lat_max')
                        geo_lon_min = self._get_harmonized_coordinate_value(
                            remote_dataset.attrs, 'geospatial_lon_min')
                        geo_lon_max = self._get_harmonized_coordinate_value(
                            remote_dataset.attrs, 'geospatial_lon_max')

                        geo_lat_res = self._get_harmonized_coordinate_value(
                            remote_dataset.attrs, 'geospatial_lon_resolution')
                        geo_lon_res = self._get_harmonized_coordinate_value(
                            remote_dataset.attrs, 'geospatial_lat_resolution')
                        if not (isnan(geo_lat_min) or isnan(geo_lat_max)
                                or isnan(geo_lon_min) or isnan(geo_lon_max)
                                or isnan(geo_lat_res) or isnan(geo_lon_res)):
                            process_region = True

                            [lat_min, lon_min, lat_max,
                             lon_max] = region.bounds

                            lat_min = floor(
                                (lat_min - geo_lat_min) / geo_lat_res)
                            lat_max = ceil(
                                (lat_max - geo_lat_min) / geo_lat_res)
                            lon_min = floor(
                                (lon_min - geo_lon_min) / geo_lon_res)
                            lon_max = ceil(
                                (lon_max - geo_lon_min) / geo_lon_res)

                            # TODO (kbernat): check why dataset.sel fails!
                            remote_dataset = remote_dataset.isel(
                                drop=False,
                                lat=slice(lat_min, lat_max),
                                lon=slice(lon_min, lon_max))

                            geo_lat_max = lat_max * geo_lat_res + geo_lat_min
                            geo_lat_min += lat_min * geo_lat_res
                            geo_lon_max = lon_max * geo_lon_res + geo_lon_min
                            geo_lon_min += lon_min * geo_lon_res

                    if not var_names:
                        var_names = [
                            var_name
                            for var_name in remote_netcdf.variables.keys()
                        ]
                    var_names.extend([
                        coord_name
                        for coord_name in remote_dataset.coords.keys()
                        if coord_name not in var_names
                    ])
                    child_monitor.start(label=file_name,
                                        total_work=len(var_names))
                    for sel_var_name in var_names:
                        var_dataset = remote_dataset.drop([
                            var_name
                            for var_name in remote_dataset.variables.keys()
                            if var_name != sel_var_name
                        ])
                        if compression_enabled:
                            var_dataset.variables.get(
                                sel_var_name).encoding.update(encoding_update)
                        local_netcdf.store_dataset(var_dataset)
                        child_monitor.progress(work=1, msg=sel_var_name)
                    if process_region:
                        local_netcdf.set_attribute('geospatial_lat_min',
                                                   geo_lat_min)
                        local_netcdf.set_attribute('geospatial_lat_max',
                                                   geo_lat_max)
                        local_netcdf.set_attribute('geospatial_lon_min',
                                                   geo_lon_min)
                        local_netcdf.set_attribute('geospatial_lon_max',
                                                   geo_lon_max)

                finally:
                    if remote_netcdf:
                        remote_netcdf.close()
                    if local_netcdf:
                        local_netcdf.close()
                        local_ds.add_dataset(
                            os.path.join(local_id, file_name),
                            (time_coverage_start, time_coverage_end))

                child_monitor.done()
        else:
            outdated_file_list = []
            for file_rec in selected_file_list:
                filename, _, _, file_size, url = file_rec
                dataset_file = os.path.join(local_path, filename)
                # todo (forman, 20160915): must perform better checks on dataset_file if it is...
                # ... outdated or incomplete or corrupted.
                # JSON also includes "checksum" and "checksum_type" fields.
                if not os.path.isfile(dataset_file) or (
                        file_size
                        and os.path.getsize(dataset_file) != file_size):
                    outdated_file_list.append(file_rec)

            if outdated_file_list:
                with monitor.starting('Sync ' + self.name,
                                      len(outdated_file_list)):
                    bytes_to_download = sum(
                        [file_rec[3] for file_rec in outdated_file_list])
                    dl_stat = _DownloadStatistics(bytes_to_download)

                    file_number = 1

                    for filename, coverage_from, coverage_to, file_size, url in outdated_file_list:
                        if monitor.is_cancelled():
                            raise InterruptedError
                        dataset_file = os.path.join(local_path, filename)
                        sub_monitor = monitor.child(work=1.0)

                        # noinspection PyUnusedLocal
                        def reporthook(block_number, read_size,
                                       total_file_size):
                            dl_stat.handle_chunk(read_size)
                            if monitor.is_cancelled():
                                raise InterruptedError
                            sub_monitor.progress(work=read_size,
                                                 msg=str(dl_stat))

                        sub_monitor_msg = "file %d of %d" % (
                            file_number, len(outdated_file_list))
                        with sub_monitor.starting(sub_monitor_msg, file_size):
                            urllib.request.urlretrieve(url[protocol],
                                                       filename=dataset_file,
                                                       reporthook=reporthook)
                        file_number += 1
                        local_ds.add_dataset(os.path.join(local_id, filename),
                                             (coverage_from, coverage_to))
        local_ds.save()
        monitor.done()