Пример #1
0
 def test_python_primitive_type_names(self):
     """
     Python primitive types
     """
     self.assertEqual(object_to_qualified_name(bool), 'bool')
     self.assertEqual(object_to_qualified_name(int), 'int')
     self.assertEqual(object_to_qualified_name(float), 'float')
     self.assertEqual(object_to_qualified_name(str), 'str')
Пример #2
0
 def _get_pandas_variable_descriptor(self, variable: pd.Series):
     return {
         'name': variable.name,
         'dataType': object_to_qualified_name(variable.dtype),
         'ndim': variable.ndim,
         'shape': variable.shape,
         'dimensions': variable.dims,
     }
Пример #3
0
    def introspect_operation(cls, operation) -> 'OpMetaInfo':
        if not operation:
            raise ValueError("'operation' argument must be given")

        op_qualified_name = object_to_qualified_name(operation, fail=True)

        input_dict, has_monitor = OrderedDict(), False
        if hasattr(operation, '__code__'):
            input_dict, has_monitor = cls._introspect_inputs_from_callable(operation, False)
        elif isclass(operation):
            if hasattr(operation, '__call__'):
                call_method = getattr(operation, '__call__')
                input_dict, has_monitor = cls._introspect_inputs_from_callable(call_method, True)
            else:
                raise ValueError('operations of type class must define a __call__(self, ...) method')

        return_name = OpMetaInfo.RETURN_OUTPUT_NAME

        output_dict = OrderedDict()
        if hasattr(operation, '__annotations__'):
            # mapping of parameters names to annotations; 'return' key is reserved for return annotations.
            annotations = operation.__annotations__
            for annotated_name, annotated_type in annotations.items():
                if annotated_name == 'return':
                    # op_meta_info.output can't be present so far -> assign new dict
                    output_dict[return_name] = dict(data_type=annotated_type)
                elif annotated_name != cls.MONITOR_INPUT_NAME:
                    # input_dict[annotated_name] should be present through _introspect_inputs_from_callable() call
                    input_dict[annotated_name]['data_type'] = annotated_type
        if len(output_dict) == 0:
            output_dict[return_name] = dict()

        header = dict()
        # Introspect the operation instance (see https://docs.python.org/3.5/library/inspect.html)
        if hasattr(operation, '__doc__'):
            # documentation string
            docstring = operation.__doc__
            if docstring:
                description, param_descriptions, return_description = cls._parse_docstring(docstring)
                if description:
                    header['description'] = description
                if param_descriptions:
                    for param_name, param_description in param_descriptions.items():
                        if param_name in input_dict:
                            input_dict[param_name]['description'] = param_descriptions[param_name]
                if return_description and return_name in output_dict:
                    output_dict[return_name]['description'] = return_description

        return OpMetaInfo(op_qualified_name,
                          header_dict=header,
                          has_monitor=has_monitor,
                          input_dict=input_dict,
                          output_dict=output_dict)
Пример #4
0
    def get_op_key(self, operation: Union[str, Callable]):
        """
        Get a key under which the given operation will be registered.

        :param operation: A fully qualified operation name or a callable object
        :return: The operation key
        """
        if isinstance(operation, str):
            qualified_name = operation
        else:
            qualified_name = object_to_qualified_name(operation)
        if qualified_name.startswith('cate.ops.'):
            return qualified_name.rsplit('.', maxsplit=1)[1]
        else:
            return qualified_name
Пример #5
0
 def test_cate_cdm_type_names(self):
     """
     Cate Common Data Model (CDM) types
     """
     self.assertEqual(object_to_qualified_name(np.ndarray), 'numpy.ndarray')
     self.assertEqual(object_to_qualified_name(xr.Dataset),
                      'xarray.core.dataset.Dataset')
     self.assertEqual(object_to_qualified_name(xr.DataArray),
                      'xarray.core.dataarray.DataArray')
     self.assertEqual(object_to_qualified_name(gpd.GeoDataFrame),
                      'geopandas.geodataframe.GeoDataFrame')
     self.assertEqual(object_to_qualified_name(gpd.GeoSeries),
                      'geopandas.geoseries.GeoSeries')
     self.assertEqual(object_to_qualified_name(pd.DataFrame),
                      'pandas.core.frame.DataFrame')
     self.assertEqual(object_to_qualified_name(pd.Series),
                      'pandas.core.series.Series')
Пример #6
0
 def _get_resource_descriptor(self, res_name: str, resource):
     variable_descriptors = []
     data_type_name = object_to_qualified_name(type(resource))
     if isinstance(resource, xr.Dataset):
         var_names = sorted(resource.data_vars.keys())
         for var_name in var_names:
             variable = resource.data_vars[var_name]
             variable_descriptors.append(
                 self._get_xarray_variable_descriptor(variable))
         return dict(name=res_name,
                     dataType=data_type_name,
                     dims=to_json(resource.dims),
                     attrs=self._get_dataset_attr_list(resource.attrs),
                     variables=variable_descriptors)
     elif isinstance(resource, pd.DataFrame):
         var_names = list(resource.columns)
         for var_name in var_names:
             variable = resource[var_name]
             variable_descriptors.append(
                 self._get_pandas_variable_descriptor(variable))
         return dict(name=res_name,
                     dataType=data_type_name,
                     variables=variable_descriptors)
     elif isinstance(resource, fiona.Collection):
         num_features = len(resource)
         properties = resource.schema.get('properties')
         if properties:
             for var_name, var_type in properties.items():
                 variable_descriptors.append({
                     'name': var_name,
                     'dataType': var_type,
                     'isFeatureAttribute': True,
                 })
         geometry = resource.schema.get('geometry')
         return dict(name=res_name,
                     dataType=data_type_name,
                     variables=variable_descriptors,
                     geometry=geometry,
                     numFeatures=num_features)
     return dict(name=res_name, dataType=data_type_name)
Пример #7
0
 def test_cate_op_api_type_names(self):
     """
     Additional Cate types used by operations API.
     """
     self.assertEqual(object_to_qualified_name(VarName),
                      'cate.core.types.VarName')
     self.assertEqual(object_to_qualified_name(VarNamesLike),
                      'cate.core.types.VarNamesLike')
     self.assertEqual(object_to_qualified_name(PointLike),
                      'cate.core.types.PointLike')
     self.assertEqual(object_to_qualified_name(PolygonLike),
                      'cate.core.types.PolygonLike')
     self.assertEqual(object_to_qualified_name(GeometryLike),
                      'cate.core.types.GeometryLike')
     self.assertEqual(object_to_qualified_name(TimeRangeLike),
                      'cate.core.types.TimeRangeLike')
Пример #8
0
 def _get_xarray_variable_descriptor(self, variable: xr.DataArray):
     attrs = variable.attrs
     variable_info = {
         'name': variable.name,
         'dataType': object_to_qualified_name(variable.dtype),
         'ndim': len(variable.dims),
         'shape': variable.shape,
         'chunks': get_chunk_size(variable),
         'dimensions': variable.dims,
         'fill_value': self._get_float_attr(attrs, '_FillValue'),
         'valid_min': self._get_float_attr(attrs, 'valid_min'),
         'valid_max': self._get_float_attr(attrs, 'valid_max'),
         'add_offset': self._get_float_attr(attrs, 'add_offset'),
         'scale_factor': self._get_float_attr(attrs, 'scale_factor'),
         'standard_name': self._get_unicode_attr(attrs, 'standard_name'),
         'long_name': self._get_unicode_attr(attrs, 'long_name'),
         'units': self._get_unicode_attr(attrs, 'units', default_value='-'),
         'comment': self._get_unicode_attr(attrs, 'comment'),
     }
     image_config = self._get_variable_image_config(variable)
     if image_config:
         variable_info['imageLayout'] = image_config
         variable_info['y_flipped'] = Workspace._is_y_flipped(variable)
     return variable_info
Пример #9
0
 def test_registered_op(self):
     registered_op = _OP_REGISTRY.get_op(
         object_to_qualified_name(scale_point))
     point = registered_op(point_like="2.4, 4.8", factor=0.5)
     self.assertEqual(point, ExamplePoint(1.2, 2.4))