Пример #1
0
def _export_review_skeleton(project_id=None, skeleton_id=None, format=None):
    """ Returns a list of segments for the requested skeleton. Each segment
    contains information about the review status of this part of the skeleton.
    """
    # Get all treenodes of the requested skeleton
    treenodes = Treenode.objects.filter(skeleton_id=skeleton_id).values_list('id', 'location', 'parent_id')
    # Get all reviews for the requested skeleton
    reviews = get_treenodes_to_reviews(skeleton_ids=[skeleton_id])

    # Add each treenode to a networkx graph and attach reviewer information to
    # it.
    g = nx.DiGraph()
    reviewed = set()
    for t in treenodes:
        loc = Double3D.from_str(t[1])
        # While at it, send the reviewer IDs, which is useful to iterate fwd
        # to the first unreviewed node in the segment.
        g.add_node(t[0], {'id': t[0], 'x': loc.x, 'y': loc.y, 'z': loc.z, 'rids': reviews[t[0]]})
        if reviews[t[0]]:
            reviewed.add(t[0])
        if t[2]: # if parent
            g.add_edge(t[2], t[0]) # edge from parent to child
        else:
            root_id = t[0]

    # Create all sequences, as long as possible and always from end towards root
    distances = edge_count_to_root(g, root_node=root_id) # distance in number of edges from root
    seen = set()
    sequences = []
    # Iterate end nodes sorted from highest to lowest distance to root
    endNodeIDs = (nID for nID in g.nodes() if 0 == len(g.successors(nID)))
    for nodeID in sorted(endNodeIDs, key=distances.get, reverse=True):
        sequence = [g.node[nodeID]]
        parents = g.predecessors(nodeID)
        while parents:
            parentID = parents[0]
            sequence.append(g.node[parentID])
            if parentID in seen:
                break
            seen.add(parentID)
            parents = g.predecessors(parentID)

        if len(sequence) > 1:
            sequences.append(sequence)

    # Calculate status

    segments = []
    for sequence in sorted(sequences, key=len, reverse=True):
        segments.append({
            'id': len(segments),
            'sequence': sequence,
            'status': '%.2f' % (100.0 * sum(1 for node in sequence if node['id'] in reviewed) / len(sequence)),
            'nr_nodes': len(sequence)
        })
    return segments
Пример #2
0
def fetch_treenodes(request, project_id=None, skeleton_id=None, with_reviewers=None):
    """ Fetch the topology only, optionally with the reviewer IDs. """
    skeleton_id = int(skeleton_id)

    cursor = connection.cursor()
    cursor.execute('''
    SELECT id, parent_id
    FROM treenode
    WHERE skeleton_id = %s
    ''' % skeleton_id)

    if with_reviewers:
        reviews = get_treenodes_to_reviews(skeleton_ids=[skeleton_id])
        treenode_data = tuple([r[0], r[1], reviews.get(r[0], [])] \
                for r in cursor.fetchall())
    else:
        treenode_data = tuple(cursor.fetchall())

    return HttpResponse(json.dumps(treenode_data))
Пример #3
0
def _skeleton_graph(project_id, skeleton_ids, confidence_threshold, bandwidth,
                    expand, compute_risk, cable_spread, path_confluence):
    """ Assumes all skeleton_ids belong to project_id. """
    skeletons_string = ",".join(str(int(x)) for x in skeleton_ids)
    cursor = connection.cursor()

    # Fetch all treenodes of all skeletons
    cursor.execute('''
    SELECT id, parent_id, confidence, skeleton_id,
           location_x, location_y, location_z
    FROM treenode
    WHERE skeleton_id IN (%s)
    ''' % skeletons_string)
    rows = tuple(cursor.fetchall())
    # Each skeleton is represented with a DiGraph
    arbors = defaultdict(nx.DiGraph)

    # Get reviewers for the requested skeletons
    reviews = get_treenodes_to_reviews(skeleton_ids=skeleton_ids)

    # Create a DiGraph for every skeleton
    for row in rows:
        arbors[row[3]].add_node(row[0],
                                {'reviewer_ids': reviews.get(row[0], [])})

    # Dictionary of skeleton IDs vs list of DiGraph instances
    arbors = split_by_confidence_and_add_edges(confidence_threshold, arbors,
                                               rows)

    # Fetch all synapses
    relations = {'presynaptic_to': -1, 'postsynaptic_to': -1}
    for r in Relation.objects.filter(
            relation_name__in=('presynaptic_to', 'postsynaptic_to'),
            project_id=project_id).values_list('relation_name', 'id'):
        relations[r[0]] = r[1]
    cursor.execute('''
    SELECT connector_id, relation_id, treenode_id, skeleton_id
    FROM treenode_connector
    WHERE skeleton_id IN (%s)
    ''' % skeletons_string)
    connectors = defaultdict(partial(defaultdict, list))
    skeleton_synapses = defaultdict(partial(defaultdict, list))
    for row in cursor.fetchall():
        connectors[row[0]][row[1]].append((row[2], row[3]))
        skeleton_synapses[row[3]][row[1]].append(row[2])

    # Cluster by synapses
    minis = defaultdict(list)  # skeleton_id vs list of minified graphs
    locations = None
    whole_arbors = arbors
    if expand and bandwidth > 0:
        locations = {row[0]: (row[4], row[5], row[6]) for row in rows}
        treenode_connector = defaultdict(list)
        for connector_id, pp in connectors.iteritems():
            for treenode_id in chain.from_iterable(
                    pp[relations['presynaptic_to']]):
                treenode_connector[treenode_id].append(
                    (connector_id, "presynaptic_to"))
            for treenode_id in chain.from_iterable(
                    pp[relations['postsynaptic_to']]):
                treenode_connector[treenode_id].append(
                    (connector_id, "postsynaptic_to"))
        arbors_to_expand = {
            skid: ls
            for skid, ls in arbors.iteritems() if skid in expand
        }
        expanded_arbors, minis = split_by_synapse_domain(
            bandwidth, locations, arbors_to_expand, treenode_connector, minis)
        arbors.update(expanded_arbors)

    # Obtain neuron names
    cursor.execute('''
    SELECT cici.class_instance_a, ci.name
    FROM class_instance ci,
         class_instance_class_instance cici,
         relation r
    WHERE cici.class_instance_a IN (%s)
      AND cici.class_instance_b = ci.id
      AND cici.relation_id = r.id
      AND r.relation_name = 'model_of'
    ''' % skeletons_string)
    names = dict(cursor.fetchall())

    # A DiGraph representing the connections between the arbors (every node is an arbor)
    circuit = nx.DiGraph()

    for skid, digraphs in arbors.iteritems():
        base_label = names[skid]
        tag = len(digraphs) > 1
        i = 0
        for g in digraphs:
            if g.number_of_nodes() == 0:
                #print "no nodes in g, from skeleton ID #%s" % skid
                continue
            if tag:
                label = "%s [%s]" % (base_label, i + 1)
            else:
                label = base_label
            circuit.add_node(
                g,
                {
                    'id':
                    "%s_%s" % (skid, i + 1),
                    'label':
                    label,
                    'skeleton_id':
                    skid,
                    'node_count':
                    len(g),
                    'node_reviewed_count':
                    sum(
                        1 for v in g.node.itervalues()
                        if 0 != len(v.get('reviewer_ids', []))
                    ),  # TODO when bandwidth > 0, not all nodes are included. They will be included when the bandwidth is computed with an O(n) algorithm rather than the current O(n^2)
                    'branch':
                    False
                })
            i += 1

    # Define edges between arbors, with number of synapses as an edge property
    for c in connectors.itervalues():
        for pre_treenode, pre_skeleton in c[relations['presynaptic_to']]:
            for pre_arbor in arbors.get(pre_skeleton, ()):
                if pre_treenode in pre_arbor:
                    # Found the DiGraph representing an arbor derived from the skeleton to which the presynaptic treenode belongs.
                    for post_treenode, post_skeleton in c[
                            relations['postsynaptic_to']]:
                        for post_arbor in arbors.get(post_skeleton, ()):
                            if post_treenode in post_arbor:
                                # Found the DiGraph representing an arbor derived from the skeleton to which the postsynaptic treenode belongs.
                                edge_props = circuit.get_edge_data(
                                    pre_arbor, post_arbor)
                                if edge_props:
                                    edge_props['c'] += 1
                                    edge_props['pre_treenodes'].append(
                                        pre_treenode)
                                    edge_props['post_treenodes'].append(
                                        post_treenode)
                                else:
                                    circuit.add_edge(
                                        pre_arbor, post_arbor, {
                                            'c': 1,
                                            'pre_treenodes': [pre_treenode],
                                            'post_treenodes': [post_treenode],
                                            'arrow': 'triangle',
                                            'directed': True
                                        })
                                break
                    break

    if compute_risk and bandwidth <= 0:
        # Compute synapse risk:
        # Compute synapse centrality of every node in every arbor that has synapses
        for skeleton_id, arbors in whole_arbors.iteritems():
            synapses = skeleton_synapses[skeleton_id]
            pre = synapses[relations['presynaptic_to']]
            post = synapses[relations['postsynaptic_to']]
            for arbor in arbors:
                # The subset of synapses that belong to the fraction of the original arbor
                pre_sub = tuple(treenodeID for treenodeID in pre
                                if treenodeID in arbor)
                post_sub = tuple(treenodeID for treenodeID in post
                                 if treenodeID in arbor)

                totalInputs = len(pre_sub)
                totalOutputs = len(post_sub)
                tc = {treenodeID: Counts() for treenodeID in arbor}

                for treenodeID in pre_sub:
                    tc[treenodeID].outputs += 1

                for treenodeID in post_sub:
                    tc[treenodeID].inputs += 1

                # Update the nPossibleIOPaths field in the Counts instance of each treenode
                _node_centrality_by_synapse(arbor, tc, totalOutputs,
                                            totalInputs)

                arbor.treenode_synapse_counts = tc

        if not locations:
            locations = {row[0]: (row[4], row[5], row[6]) for row in rows}

        # Estimate the risk factor of the edge between two arbors,
        # as a function of the number of synapses and their location within the arbor.
        # Algorithm by Casey Schneider-Mizell
        # Implemented by Albert Cardona
        for pre_arbor, post_arbor, edge_props in circuit.edges_iter(data=True):
            if pre_arbor == post_arbor:
                # Signal autapse
                edge_props['risk'] = -2
                continue

            try:
                spanning = spanning_tree(post_arbor,
                                         edge_props['post_treenodes'])
                #for arbor in whole_arbors[circuit[post_arbor]['skeleton_id']]:
                #    if post_arbor == arbor:
                #        tc = arbor.treenode_synapse_counts
                tc = post_arbor.treenode_synapse_counts
                count = spanning.number_of_nodes()
                if count < 3:
                    median_synapse_centrality = sum(
                        tc[treenodeID].synapse_centrality
                        for treenodeID in spanning.nodes_iter()) / count
                else:
                    median_synapse_centrality = sorted(
                        tc[treenodeID].synapse_centrality
                        for treenodeID in spanning.nodes_iter())[count / 2]
                cable = cable_length(spanning, locations)
                if -1 == median_synapse_centrality:
                    # Signal not computable
                    edge_props['risk'] = -1
                else:
                    edge_props['risk'] = 1.0 / sqrt(
                        pow(cable / cable_spread, 2) +
                        pow(median_synapse_centrality / path_confluence, 2)
                    )  # NOTE: should subtract 1 from median_synapse_centrality, but not doing it here to avoid potential divisions by zero
            except Exception as e:
                print >> sys.stderr, e
                # Signal error when computing
                edge_props['risk'] = -3

    if expand and bandwidth > 0:
        # Add edges between circuit nodes that represent different domains of the same neuron
        for skeleton_id, list_mini in minis.iteritems():
            for mini in list_mini:
                for node in mini.nodes_iter():
                    g = mini.node[node]['g']
                    if 1 == len(g) and g.nodes_iter(
                            data=True).next()[1].get('branch'):
                        # A branch node that was preserved in the minified arbor
                        circuit.add_node(
                            g,
                            {
                                'id': '%s-%s' % (skeleton_id, node),
                                'skeleton_id': skeleton_id,
                                'label':
                                "",  # "%s [%s]" % (names[skeleton_id], node),
                                'node_count': 1,
                                'branch': True
                            })
                for node1, node2 in mini.edges_iter():
                    g1 = mini.node[node1]['g']
                    g2 = mini.node[node2]['g']
                    circuit.add_edge(g1, g2, {
                        'c': 10,
                        'arrow': 'none',
                        'directed': False
                    })

    return circuit
Пример #4
0
def _skeleton_for_3d_viewer(skeleton_id, project_id, with_connectors=True, lean=0, all_field=False):
    """ with_connectors: when False, connectors are not returned
        lean: when not zero, both connectors and tags are returned as empty arrays. """
    skeleton_id = int(skeleton_id) # sanitize
    cursor = connection.cursor()

    # Fetch the neuron name
    cursor.execute(
        '''SELECT name
           FROM class_instance ci,
                class_instance_class_instance cici
           WHERE cici.class_instance_a = %s
             AND cici.class_instance_b = ci.id
        ''' % skeleton_id)
    row = cursor.fetchone()
    if not row:
        # Check that the skeleton exists
        cursor.execute('''SELECT id FROM class_instance WHERE id=%s''' % skeleton_id)
        if not cursor.fetchone():
            raise Exception("Skeleton #%s doesn't exist!" % skeleton_id)
        else:
            raise Exception("No neuron found for skeleton #%s" % skeleton_id)

    name = row[0]

    if all_field:
        added_fields = ', creation_time, edition_time'
    else:
        added_fields = ''

    # Fetch all nodes, with their tags if any
    cursor.execute(
        '''SELECT id, parent_id, user_id, location_x, location_y, location_z, radius, confidence %s
          FROM treenode
          WHERE skeleton_id = %s
        ''' % (added_fields, skeleton_id) )

    # array of properties: id, parent_id, user_id, x, y, z, radius, confidence
    nodes = tuple(cursor.fetchall())

    tags = defaultdict(list) # node ID vs list of tags
    connectors = []

    # Get all reviews for this skeleton
    if all_field:
        reviews = get_treenodes_to_reviews_with_time(skeleton_ids=[skeleton_id])
    else:
        reviews = get_treenodes_to_reviews(skeleton_ids=[skeleton_id])

    if 0 == lean: # meaning not lean
        # Text tags
        cursor.execute("SELECT id FROM relation WHERE project_id=%s AND relation_name='labeled_as'" % int(project_id))
        labeled_as = cursor.fetchall()[0][0]

        cursor.execute(
             ''' SELECT treenode_class_instance.treenode_id, class_instance.name
                 FROM treenode, class_instance, treenode_class_instance
                 WHERE treenode.skeleton_id = %s
                   AND treenode.id = treenode_class_instance.treenode_id
                   AND treenode_class_instance.class_instance_id = class_instance.id
                   AND treenode_class_instance.relation_id = %s
             ''' % (skeleton_id, labeled_as))

        for row in cursor.fetchall():
            tags[row[1]].append(row[0])

        if with_connectors:
            if all_field:
                added_fields = ', c.creation_time'
            else:
                added_fields = ''

            # Fetch all connectors with their partner treenode IDs
            cursor.execute(
                ''' SELECT tc.treenode_id, tc.connector_id, r.relation_name,
                           c.location_x, c.location_y, c.location_z %s
                    FROM treenode_connector tc,
                         connector c,
                         relation r
                    WHERE tc.skeleton_id = %s
                      AND tc.connector_id = c.id
                      AND tc.relation_id = r.id
                ''' % (added_fields, skeleton_id) )
            # Above, purposefully ignoring connector tags. Would require a left outer join on the inner join of connector_class_instance and class_instance, and frankly connector tags are pointless in the 3d viewer.

            # List of (treenode_id, connector_id, relation_id, x, y, z)n with relation_id replaced by 0 (presynaptic) or 1 (postsynaptic)
            # 'presynaptic_to' has an 'r' at position 1:
            for row in cursor.fetchall():
                x, y, z = imap(float, (row[3], row[4], row[5]))
                connectors.append((row[0], row[1], 0 if 'r' == row[2][1] else 1, x, y, z, row[6]))
            return name, nodes, tags, connectors, reviews

    return name, nodes, tags, connectors, reviews
Пример #5
0
def _skeleton_graph(project_id, skeleton_ids, confidence_threshold, bandwidth,
        expand, compute_risk, cable_spread, path_confluence,
        pre_rel='presynaptic_to', post_rel='postsynaptic_to'):
    """ Assumes all skeleton_ids belong to project_id. """
    skeletons_string = ",".join(str(int(x)) for x in skeleton_ids)
    cursor = connection.cursor()

    # Fetch all treenodes of all skeletons
    cursor.execute('''
    SELECT id, parent_id, confidence, skeleton_id,
           location_x, location_y, location_z
    FROM treenode
    WHERE skeleton_id IN (%s)
    ''' % skeletons_string)
    rows = tuple(cursor.fetchall())
    # Each skeleton is represented with a DiGraph
    arbors = defaultdict(nx.DiGraph)

    # Get reviewers for the requested skeletons
    reviews = get_treenodes_to_reviews(skeleton_ids=skeleton_ids)

    # Create a DiGraph for every skeleton
    for row in rows:
        arbors[row[3]].add_node(row[0], {'reviewer_ids': reviews.get(row[0], [])})

    # Dictionary of skeleton IDs vs list of DiGraph instances
    arbors = split_by_confidence_and_add_edges(confidence_threshold, arbors, rows)

    # Fetch all synapses
    relations = get_relation_to_id_map(project_id, cursor=cursor)
    cursor.execute('''
    SELECT connector_id, relation_id, treenode_id, skeleton_id
    FROM treenode_connector
    WHERE skeleton_id IN (%s)
      AND (relation_id = %s OR relation_id = %s)
    ''' % (skeletons_string, relations[pre_rel], relations[post_rel]))
    connectors = defaultdict(partial(defaultdict, list))
    skeleton_synapses = defaultdict(partial(defaultdict, list))
    for row in cursor.fetchall():
        connectors[row[0]][row[1]].append((row[2], row[3]))
        skeleton_synapses[row[3]][row[1]].append(row[2])

    # Cluster by synapses
    minis = defaultdict(list) # skeleton_id vs list of minified graphs
    locations = None
    whole_arbors = arbors
    if expand and bandwidth > 0:
        locations = {row[0]: (row[4], row[5], row[6]) for row in rows}
        treenode_connector = defaultdict(list)
        for connector_id, pp in connectors.items():
            for treenode_id in chain.from_iterable(pp[relations[pre_rel]]):
                treenode_connector[treenode_id].append((connector_id, pre_rel))
            for treenode_id in chain.from_iterable(pp[relations[post_rel]]):
                treenode_connector[treenode_id].append((connector_id, post_rel))
        arbors_to_expand = {skid: ls for skid, ls in arbors.items() if skid in expand}
        expanded_arbors, minis = split_by_synapse_domain(bandwidth, locations, arbors_to_expand, treenode_connector, minis)
        arbors.update(expanded_arbors)


    # Obtain neuron names
    cursor.execute('''
    SELECT cici.class_instance_a, ci.name
    FROM class_instance ci,
         class_instance_class_instance cici
    WHERE cici.class_instance_a IN (%s)
      AND cici.class_instance_b = ci.id
      AND cici.relation_id = %s
    ''' % (skeletons_string, relations['model_of']))
    names = dict(cursor.fetchall())

    # A DiGraph representing the connections between the arbors (every node is an arbor)
    circuit = nx.DiGraph()

    for skid, digraphs in arbors.items():
        base_label = names[skid]
        tag = len(digraphs) > 1
        i = 0
        for g in digraphs:
            if g.number_of_nodes() == 0:
                continue
            if tag:
                label = "%s [%s]" % (base_label, i+1)
            else:
                label = base_label
            circuit.add_node(g, {'id': "%s_%s" % (skid, i+1),
                                 'label': label,
                                 'skeleton_id': skid,
                                 'node_count': len(g),
                                 'node_reviewed_count': sum(1 for v in g.node.values() if 0 != len(v.get('reviewer_ids', []))), # TODO when bandwidth > 0, not all nodes are included. They will be included when the bandwidth is computed with an O(n) algorithm rather than the current O(n^2)
                                 'branch': False})
            i += 1

    # Define edges between arbors, with number of synapses as an edge property
    for c in connectors.values():
        for pre_treenode, pre_skeleton in c[relations[pre_rel]]:
            for pre_arbor in arbors.get(pre_skeleton, ()):
                if pre_treenode in pre_arbor:
                    # Found the DiGraph representing an arbor derived from the skeleton to which the presynaptic treenode belongs.
                    for post_treenode, post_skeleton in c[relations[post_rel]]:
                        for post_arbor in arbors.get(post_skeleton, ()):
                            if post_treenode in post_arbor:
                                # Found the DiGraph representing an arbor derived from the skeleton to which the postsynaptic treenode belongs.
                                edge_props = circuit.get_edge_data(pre_arbor, post_arbor)
                                if edge_props:
                                    edge_props['c'] += 1
                                    edge_props['pre_treenodes'].append(pre_treenode)
                                    edge_props['post_treenodes'].append(post_treenode)
                                else:
                                    circuit.add_edge(pre_arbor, post_arbor, {'c': 1, 'pre_treenodes': [pre_treenode], 'post_treenodes': [post_treenode], 'arrow': 'triangle', 'directed': True})
                                break
                    break

    if compute_risk and bandwidth <= 0:
        # Compute synapse risk:
        # Compute synapse centrality of every node in every arbor that has synapses
        for skeleton_id, arbors in whole_arbors.items():
            synapses = skeleton_synapses[skeleton_id]
            pre = synapses[relations[pre_rel]]
            post = synapses[relations[post_rel]]
            for arbor in arbors:
                # The subset of synapses that belong to the fraction of the original arbor
                pre_sub = tuple(treenodeID for treenodeID in pre if treenodeID in arbor)
                post_sub = tuple(treenodeID for treenodeID in post if treenodeID in arbor)

                totalInputs = len(pre_sub)
                totalOutputs = len(post_sub)
                tc = {treenodeID: Counts() for treenodeID in arbor}

                for treenodeID in pre_sub:
                    tc[treenodeID].outputs += 1

                for treenodeID in post_sub:
                    tc[treenodeID].inputs += 1

                # Update the nPossibleIOPaths field in the Counts instance of each treenode
                _node_centrality_by_synapse(arbor, tc, totalOutputs, totalInputs)

                arbor.treenode_synapse_counts = tc

        if not locations:
            locations = {row[0]: (row[4], row[5], row[6]) for row in rows}

        # Estimate the risk factor of the edge between two arbors,
        # as a function of the number of synapses and their location within the arbor.
        # Algorithm by Casey Schneider-Mizell
        # Implemented by Albert Cardona
        for pre_arbor, post_arbor, edge_props in circuit.edges_iter(data=True):
            if pre_arbor == post_arbor:
                # Signal autapse
                edge_props['risk'] = -2
                continue

            try:
                spanning = spanning_tree(post_arbor, edge_props['post_treenodes'])
                #for arbor in whole_arbors[circuit[post_arbor]['skeleton_id']]:
                #    if post_arbor == arbor:
                #        tc = arbor.treenode_synapse_counts
                tc = post_arbor.treenode_synapse_counts
                count = spanning.number_of_nodes()
                if count < 3:
                    median_synapse_centrality = sum(tc[treenodeID].synapse_centrality for treenodeID in spanning.nodes_iter()) / count
                else:
                    median_synapse_centrality = sorted(tc[treenodeID].synapse_centrality for treenodeID in spanning.nodes_iter())[count / 2]
                cable = cable_length(spanning, locations)
                if -1 == median_synapse_centrality:
                    # Signal not computable
                    edge_props['risk'] = -1
                else:
                    edge_props['risk'] = 1.0 / sqrt(pow(cable / cable_spread, 2) + pow(median_synapse_centrality / path_confluence, 2)) # NOTE: should subtract 1 from median_synapse_centrality, but not doing it here to avoid potential divisions by zero
            except Exception as e:
                logging.getLogger(__name__).error(e)
                # Signal error when computing
                edge_props['risk'] = -3


    if expand and bandwidth > 0:
        # Add edges between circuit nodes that represent different domains of the same neuron
        for skeleton_id, list_mini in minis.items():
            for mini in list_mini:
                for node in mini.nodes_iter():
                    g = mini.node[node]['g']
                    if 1 == len(g) and next(g.nodes_iter(data=True))[1].get('branch'):
                        # A branch node that was preserved in the minified arbor
                        circuit.add_node(g, {'id': '%s-%s' % (skeleton_id, node),
                                             'skeleton_id': skeleton_id,
                                             'label': "", # "%s [%s]" % (names[skeleton_id], node),
                                             'node_count': 1,
                                             'branch': True})
                for node1, node2 in mini.edges_iter():
                    g1 = mini.node[node1]['g']
                    g2 = mini.node[node2]['g']
                    circuit.add_edge(g1, g2, {'c': 10, 'arrow': 'none', 'directed': False})

    return circuit
Пример #6
0
def list_treenode_table(request, project_id=None):
    stack_id = request.POST.get('stack_id', None)
    specified_skeleton_count = request.POST.get('skeleton_nr', 0)
    display_start = request.POST.get('iDisplayStart', 0)
    display_length = request.POST.get('iDisplayLength', -1)
    should_sort = request.POST.get('iSortCol_0', None)
    filter_nodetype = request.POST.get('sSearch_1', None)
    filter_labels = request.POST.get('sSearch_2', None)

    relation_map = get_relation_to_id_map(project_id)

    response_on_error = ''
    try:

        def search_query_is_empty():
            if specified_skeleton_count == 0:
                return True
            first_skeleton_id = request.POST.get('skeleton_0', None)
            if first_skeleton_id is None:
                return True
            elif upper(first_skeleton_id) in ['NONE', 'NULL']:
                return True
            return False

        if search_query_is_empty():
            return HttpResponse(
                json.dumps({
                    'iTotalRecords': 0,
                    'iTotalDisplayRecords': 0,
                    'aaData': []
                }))
        else:
            response_on_error = 'Could not fetch %s skeleton IDs.' % \
                specified_skeleton_count
            skeleton_ids = [int(request.POST.get('skeleton_%s' % i, 0)) \
                for i in range(int(specified_skeleton_count))]

        if should_sort:
            column_count = int(request.POST.get('iSortingCols', 0))
            sorting_directions = [request.POST.get('sSortDir_%d' % d) \
                for d in range(column_count)]
            sorting_directions = map(lambda d: \
                '-' if upper(d) == 'DESC' else '', sorting_directions)

            fields = [
                'tid', 'type', '"treenode"."labels"', 'confidence', 'x', 'y',
                'z', '"treenode"."section"', 'radius', 'username',
                'last_modified'
            ]
            # TODO type field not supported.
            sorting_index = [int(request.POST.get('iSortCol_%d' % d)) \
                for d in range(column_count)]
            sorting_cols = map(lambda i: fields[i], sorting_index)

        response_on_error = 'Could not get the list of treenodes.'
        t = Treenode.objects \
            .filter(
                project=project_id,
                skeleton_id__in=skeleton_ids) \
            .extra(
                tables=['auth_user'],
                where=[
                    '"treenode"."user_id" = "auth_user"."id"'],
                select={
                    'tid': '"treenode"."id"',
                    'radius': '"treenode"."radius"',
                    'confidence': '"treenode"."confidence"',
                    'parent_id': '"treenode"."parent_id"',
                    'user_id': '"treenode"."user_id"',
                    'edition_time': '"treenode"."edition_time"',
                    'x': '"treenode"."location_x"',
                    'y': '"treenode"."location_y"',
                    'z': '"treenode"."location_z"',
                    'username': '******',
                    'last_modified': 'to_char("treenode"."edition_time", \'DD-MM-YYYY HH24:MI\')'
                }) \
            .distinct()
        # Rationale for using .extra():
        # Since we don't use .order_by() for ordering, extra fields are not
        # included in the SELECT statement, and so .distinct() will work as
        # intended. See http://tinyurl.com/dj-distinct
        if should_sort:
            t = t.extra(order_by=[di + col \
                for (di, col) in zip(sorting_directions, sorting_cols)])

        if int(display_length) == -1:
            treenodes = list(t[display_start:])
        else:
            treenodes = list(t[display_start:display_start + display_length])

        # The number of results to be displayed should include items that are
        # filtered out.
        row_count = len(treenodes)

        # Filter out irrelevant treenodes if a label has been specified
        if 'labeled_as' in relation_map:
            response_on_error = 'Could not retrieve labels for project.'
            project_lables = TreenodeClassInstance.objects.filter(
                project=project_id,
                relation=relation_map['labeled_as']).values(
                    'treenode', 'class_instance__name')
            labels_by_treenode = {}  # Key: Treenode ID, Value: List of labels.
            for label in project_lables:
                if label['treenode'] not in labels_by_treenode:
                    labels_by_treenode[label['treenode']] = [
                        label['class_instance__name']
                    ]
                else:
                    labels_by_treenode[label['treenode']].append(
                        label['class_instance__name'])

            if filter_labels:

                def label_filter(treenode):
                    if treenode.id not in labels_by_treenode:
                        return False
                    return upper(filter_labels) in upper(' '.join(
                        labels_by_treenode[treenode.tid]))

                treenodes = filter(label_filter, treenodes)

        # Filter out irrelevant treenodes if a node type has been specified.

        # Count treenode's children to derive treenode types. The number of
        # children a treenode has determines its type. Types:
        # R : root (parent = null)
        # S : slab (has one child)
        # B : branch (has more than one child)
        # L : leaf (has no children)
        # X : undefined (uh oh!)
        if 0 == display_start and -1 == display_length:
            # All nodes are loaded: determine child_count from loaded nodes
            child_count = {}
            for treenode in treenodes:
                if treenode.parent is None:
                    continue
                n_children = child_count.get(treenode.parent_id, 0)
                child_count[treenode.parent_id] = n_children + 1
        else:
            # Query for parents
            response_on_error = 'Could not retrieve treenode parents.'
            child_count_query = Treenode.objects.filter(
                project=project_id, skeleton_id__in=skeleton_ids).annotate(
                    child_count=Count('children'))
            child_count = {}
            for treenode in child_count_query:
                child_count[treenode.id] = treenode.child_count

        # Determine type
        for treenode in treenodes:
            if None == treenode.parent_id:
                treenode.nodetype = 'R'  # Root
                continue
            children = child_count.get(treenode.tid, 0)
            if children == 1:
                treenode.nodetype = 'S'  # Slab
            elif children == 0:
                treenode.nodetype = 'L'  # Leaf
            elif children > 1:
                treenode.nodetype = 'B'  # Branch
            else:
                treenode.nodetype = 'X'  # Unknown, can never happen

        # Now that we've assigned node types, filter based on them:
        if filter_nodetype:
            filter_nodetype = upper(filter_nodetype)
            treenodes = [t for t in treenodes if t.nodetype in filter_nodetype]

        users = dict(User.objects.all().values_list('id', 'username'))
        users[-1] = "None"  # Rather than AnonymousUser

        # Get all reviews for the current treenode set
        treenode_ids = [t.id for t in treenodes]
        treenode_to_reviews = get_treenodes_to_reviews(treenode_ids,
                                                       umap=lambda r: users[r])

        if stack_id:
            response_on_error = 'Could not retrieve resolution and translation ' \
                'parameters for project.'
            resolution = get_object_or_404(Stack, id=int(stack_id)).resolution
            translation = get_object_or_404(ProjectStack,
                                            stack=int(stack_id),
                                            project=project_id).translation
        else:
            resolution = Double3D(1.0, 1.0, 1.0)
            translation = Double3D(0.0, 0.0, 0.0)

        def formatTreenode(tn):
            row = [str(tn.tid)]
            row.append(tn.nodetype)
            if tn.tid in labels_by_treenode:
                row.append(', '.join(map(str, labels_by_treenode[tn.tid])))
            else:
                row.append('')
            row.append(str(tn.confidence))
            row.append('%.2f' % tn.x)
            row.append('%.2f' % tn.y)
            row.append('%.2f' % tn.z)
            row.append(int((tn.z - translation.z) / resolution.z))
            row.append(str(tn.radius))
            row.append(tn.username)
            row.append(tn.last_modified)
            row.append(', '.join(treenode_to_reviews.get(tn.id, ["None"])))
            return row

        result = {
            'iTotalRecords': row_count,
            'iTotalDisplayRecords': row_count
        }
        response_on_error = 'Could not format output.'
        result['aaData'] = map(formatTreenode, treenodes)

        return HttpResponse(json.dumps(result))

    except Exception as e:
        raise Exception(response_on_error + ':' + str(e))
Пример #7
0
def _skeleton_for_3d_viewer(skeleton_id, project_id, with_connectors=True, lean=0, all_field=False):
    """ with_connectors: when False, connectors are not returned
        lean: when not zero, both connectors and tags are returned as empty arrays. """
    skeleton_id = int(skeleton_id) # sanitize
    cursor = connection.cursor()

    # Fetch the neuron name
    cursor.execute(
        '''SELECT name
           FROM class_instance ci,
                class_instance_class_instance cici
           WHERE cici.class_instance_a = %s
             AND cici.class_instance_b = ci.id
        ''' % skeleton_id)
    row = cursor.fetchone()
    if not row:
        # Check that the skeleton exists
        cursor.execute('''SELECT id FROM class_instance WHERE id=%s''' % skeleton_id)
        if not cursor.fetchone():
            raise Exception("Skeleton #%s doesn't exist!" % skeleton_id)
        else:
            raise Exception("No neuron found for skeleton #%s" % skeleton_id)

    name = row[0]

    if all_field:
        added_fields = ', creation_time, edition_time'
    else:
        added_fields = ''

    # Fetch all nodes, with their tags if any
    cursor.execute(
        '''SELECT id, parent_id, user_id, location_x, location_y, location_z, radius, confidence %s
          FROM treenode
          WHERE skeleton_id = %s
        ''' % (added_fields, skeleton_id) )

    # array of properties: id, parent_id, user_id, x, y, z, radius, confidence
    nodes = tuple(cursor.fetchall())

    tags = defaultdict(list) # node ID vs list of tags
    connectors = []

    # Get all reviews for this skeleton
    if all_field:
        reviews = get_treenodes_to_reviews_with_time(skeleton_ids=[skeleton_id])
    else:
        reviews = get_treenodes_to_reviews(skeleton_ids=[skeleton_id])

    if 0 == lean: # meaning not lean
        # Text tags
        cursor.execute("SELECT id FROM relation WHERE project_id=%s AND relation_name='labeled_as'" % int(project_id))
        labeled_as = cursor.fetchall()[0][0]

        cursor.execute(
             ''' SELECT treenode_class_instance.treenode_id, class_instance.name
                 FROM treenode, class_instance, treenode_class_instance
                 WHERE treenode.skeleton_id = %s
                   AND treenode.id = treenode_class_instance.treenode_id
                   AND treenode_class_instance.class_instance_id = class_instance.id
                   AND treenode_class_instance.relation_id = %s
             ''' % (skeleton_id, labeled_as))

        for row in cursor.fetchall():
            tags[row[1]].append(row[0])

        if with_connectors:
            if all_field:
                added_fields = ', c.creation_time'
            else:
                added_fields = ''

            # Fetch all connectors with their partner treenode IDs
            cursor.execute(
                ''' SELECT tc.treenode_id, tc.connector_id, r.relation_name,
                           c.location_x, c.location_y, c.location_z %s
                    FROM treenode_connector tc,
                         connector c,
                         relation r
                    WHERE tc.skeleton_id = %s
                      AND tc.connector_id = c.id
                      AND tc.relation_id = r.id
                ''' % (added_fields, skeleton_id) )
            # Above, purposefully ignoring connector tags. Would require a left outer join on the inner join of connector_class_instance and class_instance, and frankly connector tags are pointless in the 3d viewer.

            # List of (treenode_id, connector_id, relation_id, x, y, z)n with relation_id replaced by 0 (presynaptic) or 1 (postsynaptic)
            # 'presynaptic_to' has an 'r' at position 1:
            for row in cursor.fetchall():
                x, y, z = imap(float, (row[3], row[4], row[5]))
                connectors.append((row[0], row[1], 0 if 'r' == row[2][1] else 1, x, y, z, row[6]))
            return name, nodes, tags, connectors, reviews

    return name, nodes, tags, connectors, reviews
Пример #8
0
def list_treenode_table(request, project_id=None):
    stack_id = request.POST.get('stack_id', None)
    specified_skeleton_count = request.POST.get('skeleton_nr', 0)
    display_start = request.POST.get('iDisplayStart', 0)
    display_length = request.POST.get('iDisplayLength', -1)
    should_sort = request.POST.get('iSortCol_0', None)
    filter_nodetype = request.POST.get('sSearch_1', None)
    filter_labels = request.POST.get('sSearch_2', None)

    relation_map = get_relation_to_id_map(project_id)

    response_on_error = ''
    try:
        def search_query_is_empty():
            if specified_skeleton_count == 0:
                return True
            first_skeleton_id = request.POST.get('skeleton_0', None)
            if first_skeleton_id is None:
                return True
            elif upper(first_skeleton_id) in ['NONE', 'NULL']:
                return True
            return False

        if search_query_is_empty():
            return HttpResponse(json.dumps({
                'iTotalRecords': 0,
                'iTotalDisplayRecords': 0,
                'aaData': []}))
        else:
            response_on_error = 'Could not fetch %s skeleton IDs.' % \
                specified_skeleton_count
            skeleton_ids = [int(request.POST.get('skeleton_%s' % i, 0)) \
                for i in range(int(specified_skeleton_count))]

        if should_sort:
            column_count = int(request.POST.get('iSortingCols', 0))
            sorting_directions = [request.POST.get('sSortDir_%d' % d) \
                for d in range(column_count)]
            sorting_directions = map(lambda d: \
                '-' if upper(d) == 'DESC' else '', sorting_directions)

            fields = ['tid', 'type', '"treenode"."labels"', 'confidence',
                      'x', 'y', 'z', '"treenode"."section"', 'radius',
                      'username', 'last_modified']
            # TODO type field not supported.
            sorting_index = [int(request.POST.get('iSortCol_%d' % d)) \
                for d in range(column_count)]
            sorting_cols = map(lambda i: fields[i], sorting_index)

        response_on_error = 'Could not get the list of treenodes.'
        t = Treenode.objects \
            .filter(
                project=project_id,
                skeleton_id__in=skeleton_ids) \
            .extra(
                tables=['auth_user'],
                where=[
                    '"treenode"."user_id" = "auth_user"."id"'],
                select={
                    'tid': '"treenode"."id"',
                    'radius': '"treenode"."radius"',
                    'confidence': '"treenode"."confidence"',
                    'parent_id': '"treenode"."parent_id"',
                    'user_id': '"treenode"."user_id"',
                    'edition_time': '"treenode"."edition_time"',
                    'x': '"treenode"."location_x"',
                    'y': '"treenode"."location_y"',
                    'z': '"treenode"."location_z"',
                    'username': '******',
                    'last_modified': 'to_char("treenode"."edition_time", \'DD-MM-YYYY HH24:MI\')'
                }) \
            .distinct()
        # Rationale for using .extra():
        # Since we don't use .order_by() for ordering, extra fields are not
        # included in the SELECT statement, and so .distinct() will work as
        # intended. See http://tinyurl.com/dj-distinct
        if should_sort:
            t = t.extra(order_by=[di + col \
                for (di, col) in zip(sorting_directions, sorting_cols)])

        if int(display_length) == -1:
            treenodes = list(t[display_start:])
        else:
            treenodes = list(t[display_start:display_start + display_length])

        # The number of results to be displayed should include items that are
        # filtered out.
        row_count = len(treenodes)

        # Filter out irrelevant treenodes if a label has been specified
        if 'labeled_as' in relation_map:
            response_on_error = 'Could not retrieve labels for project.'
            project_lables = TreenodeClassInstance.objects.filter(
                project=project_id,
                relation=relation_map['labeled_as']).values(
                'treenode',
                'class_instance__name')
            labels_by_treenode = {}  # Key: Treenode ID, Value: List of labels.
            for label in project_lables:
                if label['treenode'] not in labels_by_treenode:
                    labels_by_treenode[label['treenode']] = [label['class_instance__name']]
                else:
                    labels_by_treenode[label['treenode']].append(label['class_instance__name'])

            if filter_labels:
                def label_filter(treenode):
                    if treenode.id not in labels_by_treenode:
                        return False
                    return upper(filter_labels) in upper(' '.join(labels_by_treenode[treenode.tid]))
                treenodes = filter(label_filter, treenodes)

        # Filter out irrelevant treenodes if a node type has been specified.

        # Count treenode's children to derive treenode types. The number of
        # children a treenode has determines its type. Types:
        # R : root (parent = null)
        # S : slab (has one child)
        # B : branch (has more than one child)
        # L : leaf (has no children)
        # X : undefined (uh oh!)
        if 0 == display_start and -1 == display_length:
            # All nodes are loaded: determine child_count from loaded nodes
            child_count = {}
            for treenode in treenodes:
                if treenode.parent is None:
                    continue
                n_children = child_count.get(treenode.parent_id, 0)
                child_count[treenode.parent_id] = n_children + 1
        else:
            # Query for parents
            response_on_error = 'Could not retrieve treenode parents.'
            child_count_query = Treenode.objects.filter(
                project=project_id,
                skeleton_id__in=skeleton_ids).annotate(
                child_count=Count('children'))
            child_count = {}
            for treenode in child_count_query:
                child_count[treenode.id] = treenode.child_count

        # Determine type
        for treenode in treenodes:
            if None == treenode.parent_id:
                treenode.nodetype = 'R'  # Root
                continue
            children = child_count.get(treenode.tid, 0)
            if children == 1:
                treenode.nodetype = 'S'  # Slab
            elif children == 0:
                treenode.nodetype = 'L'  # Leaf
            elif children > 1:
                treenode.nodetype = 'B'  # Branch
            else:
                treenode.nodetype = 'X'  # Unknown, can never happen

        # Now that we've assigned node types, filter based on them:
        if filter_nodetype:
            filter_nodetype = upper(filter_nodetype)
            treenodes = [t for t in treenodes if t.nodetype in filter_nodetype]

        users = dict(User.objects.all().values_list('id', 'username'))
        users[-1] = "None"  # Rather than AnonymousUser

        # Get all reviews for the current treenode set
        treenode_ids = [t.id for t in treenodes]
        treenode_to_reviews = get_treenodes_to_reviews(treenode_ids,
            umap=lambda r: users[r])

        if stack_id:
            response_on_error = 'Could not retrieve resolution and translation ' \
                'parameters for project.'
            resolution = get_object_or_404(Stack, id=int(stack_id)).resolution
            translation = get_object_or_404(ProjectStack,
                stack=int(stack_id), project=project_id).translation
        else:
            resolution = Double3D(1.0, 1.0, 1.0)
            translation = Double3D(0.0, 0.0, 0.0)

        def formatTreenode(tn):
            row = [str(tn.tid)]
            row.append(tn.nodetype)
            if tn.tid in labels_by_treenode:
                row.append(', '.join(map(str, labels_by_treenode[tn.tid])))
            else:
                row.append('')
            row.append(str(tn.confidence))
            row.append('%.2f' % tn.x)
            row.append('%.2f' % tn.y)
            row.append('%.2f' % tn.z)
            row.append(int((tn.z - translation.z) / resolution.z))
            row.append(str(tn.radius))
            row.append(tn.username)
            row.append(tn.last_modified)
            row.append(', '.join(treenode_to_reviews.get(tn.id, ["None"])))
            return row

        result = {'iTotalRecords': row_count, 'iTotalDisplayRecords': row_count}
        response_on_error = 'Could not format output.'
        result['aaData'] = map(formatTreenode, treenodes)

        return HttpResponse(json.dumps(result))

    except Exception as e:
        raise Exception(response_on_error + ':' + str(e))
Пример #9
0
def _export_review_skeleton(project_id=None, skeleton_id=None, format=None,
                            subarbor_node_id=None):
    """ Returns a list of segments for the requested skeleton. Each segment
    contains information about the review status of this part of the skeleton.
    If a valid subarbor_node_id is given, only data for the sub-arbor is
    returned that starts at this node.
    """
    # Get all treenodes of the requested skeleton
    treenodes = Treenode.objects.filter(skeleton_id=skeleton_id).values_list(
        'id', 'parent_id', 'location_x', 'location_y', 'location_z')
    # Get all reviews for the requested skeleton
    reviews = get_treenodes_to_reviews(skeleton_ids=[skeleton_id])

    # Add each treenode to a networkx graph and attach reviewer information to
    # it.
    g = nx.DiGraph()
    reviewed = set()
    for t in treenodes:
        # While at it, send the reviewer IDs, which is useful to iterate fwd
        # to the first unreviewed node in the segment.
        g.add_node(t[0], {'id': t[0], 'x': t[2], 'y': t[3], 'z': t[4], 'rids': reviews[t[0]]})
        if reviews[t[0]]:
            reviewed.add(t[0])
        if t[1]: # if parent
            g.add_edge(t[1], t[0]) # edge from parent to child
        else:
            root_id = t[0]

    if subarbor_node_id and subarbor_node_id != root_id:
        # Make sure the subarbor node ID (if any) is part of this skeleton
        if subarbor_node_id not in g:
            raise ValueError("Supplied subarbor node ID (%s) is not part of "
                             "provided skeleton (%s)" % (subarbor_node_id, skeleton_id))

        # Remove connection to parent
        parent = g.predecessors(subarbor_node_id)[0]
        g.remove_edge(parent, subarbor_node_id)
        # Remove all nodes that are upstream from the subarbor node
        to_delete = set()
        to_lookat = [root_id]
        while to_lookat:
            n = to_lookat.pop()
            to_lookat.extend(g.successors(n))
            to_delete.add(n)
        g.remove_nodes_from(to_delete)
        # Replace root id with sub-arbor ID
        root_id=subarbor_node_id

    # Create all sequences, as long as possible and always from end towards root
    distances = edge_count_to_root(g, root_node=root_id) # distance in number of edges from root
    seen = set()
    sequences = []
    # Iterate end nodes sorted from highest to lowest distance to root
    endNodeIDs = (nID for nID in g.nodes() if 0 == len(g.successors(nID)))
    for nodeID in sorted(endNodeIDs, key=distances.get, reverse=True):
        sequence = [g.node[nodeID]]
        parents = g.predecessors(nodeID)
        while parents:
            parentID = parents[0]
            sequence.append(g.node[parentID])
            if parentID in seen:
                break
            seen.add(parentID)
            parents = g.predecessors(parentID)

        if len(sequence) > 1:
            sequences.append(sequence)

    # Calculate status

    segments = []
    for sequence in sorted(sequences, key=len, reverse=True):
        segments.append({
            'id': len(segments),
            'sequence': sequence,
            'status': '%.2f' % (100.0 * sum(1 for node in sequence if node['id'] in reviewed) / len(sequence)),
            'nr_nodes': len(sequence)
        })
    return segments