# or dependent on the boundary condition. # @@ Also, would be nice to have multiple variables in one plot and/or multiple simulations if pattcorryr: # yearly anomaly pattern corr w/ the time mean pattern tmp = fldpseazm[yr, lat > corrlim, ...] - fldcseazmtm[lat > corrlim, ...] else: # time-integrated anomaly pattern corr w/ the end anomaly pattern tmp = np.mean(fldpseazm[0:yr, lat > corrlim, ...], axis=0) - fldcseazmtm[lat > corrlim, ...] tmpmean = fldpseazmtm[lat > corrlim, ...] - fldcseazmtm[lat > corrlim, ...] # the end pattern tmpcorr = ma.corrcoef(tmp.flatten() * weights.flatten(), tmpmean.flatten() * weights.flatten()) plotd[yr] = tmpcorr[0, 1] testd[yr] = cutl.pattcorr( tmp.flatten() * weights.flatten(), tmpmean.flatten() * weights.flatten() ) # @@ same result as built-in method """ from canam4sims_analens.py. modify for here ensmem = fldpdict[sim][moidx,lat>corrlim,...] - fldcdict[sim][moidx,lat>corrlim,...] obsbc = fldp2[moidx,lat>corrlim,...] - fldc2[moidx,lat>corrlim,...] # weight the fields by area areas = cutl.calc_cellareas(lat,lon) areas = areas[lat>corrlim,:] areas = ma.masked_where(lmask[lat>corrlim,:]==-1,areas) weights = areas / np.sum(np.sum(areas,axis=1),axis=0) ensmem = ma.masked_where(lmask[lat>corrlim,:]==-1,ensmem) # mask out land obsbc = ma.masked_where(lmask[lat>corrlim,:]==-1,obsbc) # mask out land
def pattcorr_ensemble(ename, field, latlim=60): # @@@@@@@@@@@@ is this fully implemented? Don't think so. 12/2/14 if ename=='ANT': ename='HistIC' elif ename=='TOT': ename='HistBC' enssims = con.build_ensemblesims(ename) ensnum=len(enssims) # ======= copied from Canam4_BCpatterncorr-Copy0.py =========== #ensnum=5 diffdict = {} pcmeandict = {} # fldp-fldc pattern corr compared to mean BC pchaddict = {} # fldp-fldc pattern corr compared to hadisst seadiffdict = {} # seasonal mean pcseameandict = {} pcsea2meandict = {} # to test the other pattern corr calc pcsea2pvalmeandict = {} # to test the other pattern corr calc # generate weights for the pattern corr lat = con.get_t63lat() lon = con.get_t63lon() areas = cutl.calc_cellareas(lat,lon) areas = areas[lat>latlim,:] weights = areas / np.sum(np.sum(areas,axis=1),axis=0) #for eii in range(1,ensnum+1): for skey in enssims: #skey = etype + str(eii) #casenamec = bcasenamec + skey #casenamep = bcasenamep + skey #fnamec = basepath + casenamec+ subdir + casenamec + '_' + field + '_001-121_ts.nc' #fnamep = basepath + casenamep+ subdir + casenamep + '_' + field + '_001-121_ts.nc' fnamec,fnamep = con.build_filepathpair(skey,field) # monthly calc fldc = cnc.getNCvar(fnamec,ncfield,timesel=timesel)*conv fldp = cnc.getNCvar(fnamep,ncfield,timesel=timesel)*conv fldd = fldp-fldc # take the pattern correlation flddclimo,flddstd = cutl.climatologize(fldd) # climo first (don't need to do for BCs technically) flddcclimo,flddcstd = cutl.climatologize(flddc) # climo first. baseline diff data diffdict[skey] = flddclimo # for each month, compute pattern corr pc = np.zeros((12)) for mii,mon in enumerate(con.get_mon()): tmp = np.squeeze(flddclimo[mii,lat>latlim,...]) tmpcmp = np.squeeze(flddcclimo[mii,lat>latlim,...]) pc[mii] = cutl.pattcorr(tmp.flatten()*weights.flatten(),tmpcmp.flatten()*weights.flatten()) pcmeandict[skey] = pc # monthly # seasonal calc fldcsea = np.zeros((4,len(lat),len(lon))) fldpsea = np.zeros((4,len(lat),len(lon))) flddsea = np.zeros((4,len(lat),len(lon))) pcsea = np.zeros((4)) pcsea2 = np.zeros((4)) # test pattcorr_pearson() @@ pcsea2pval = np.zeros((4)) # test pattcorr_pearson() for seaii,sea in enumerate(seasons): fldcsea[seaii,...] = np.mean(cnc.getNCvar(fnamec,ncfield,timesel=timesel,seas=sea)*conv,axis=0) fldpsea[seaii,...] = np.mean(cnc.getNCvar(fnamep,ncfield,timesel=timesel,seas=sea)*conv,axis=0) flddsea[seaii,...] = fldpsea[seaii,...]-fldcsea[seaii,...] tmp = np.squeeze(flddsea[seaii,lat>latlim,...]) tmpcmp = np.squeeze(flddcsea[seaii,lat>latlim,...]) pcsea[seaii] = cutl.pattcorr(tmp.flatten()*weights.flatten(), tmpcmp.flatten()*weights.flatten()) pcsea2[seaii],pcsea2pval[seaii] = cutl.pattcorr_pearson(tmp.flatten()*weights.flatten(), tmpcmp.flatten()*weights.flatten()) seadiffdict[skey] = flddsea pcseameandict[skey] = pcsea pcsea2meandict[skey] = pcsea2 pcsea2pvalmeandict[skey] = pcsea2pval
fldc = cnc.getNCvar(fnamec,ncfield,timesel=timesel)*conv fldp = cnc.getNCvar(fnamep,ncfield,timesel=timesel)*conv fldd = fldp-fldc # take the pattern correlation flddclimo,flddstd = cutl.climatologize(fldd) # climo first (don't need to do for BCs technically) flddcclimo,flddcstd = cutl.climatologize(flddc) # climo first. baseline diff data diffdict[skey] = flddclimo # for each month, compute pattern corr pc = np.zeros((12)) for mii,mon in enumerate(con.get_mon()): tmp = np.squeeze(flddclimo[mii,lat>latlim,...]) tmpcmp = np.squeeze(flddcclimo[mii,lat>latlim,...]) pc[mii] = cutl.pattcorr(tmp.flatten()*weights.flatten(),tmpcmp.flatten()*weights.flatten()) pcmeandict[skey] = pc # monthly # seasonal calc fldcsea = np.zeros((4,len(lat),len(lon))) fldpsea = np.zeros((4,len(lat),len(lon))) flddsea = np.zeros((4,len(lat),len(lon))) pcsea = np.zeros((4)) pcsea2 = np.zeros((4)) # test pattcorr_pearson() @@ pcsea2pval = np.zeros((4)) # test pattcorr_pearson() for seaii,sea in enumerate(seasons): fldcsea[seaii,...] = np.mean(cnc.getNCvar(fnamec,ncfield,timesel=timesel,seas=sea)*conv,axis=0) fldpsea[seaii,...] = np.mean(cnc.getNCvar(fnamep,ncfield,timesel=timesel,seas=sea)*conv,axis=0) flddsea[seaii,...] = fldpsea[seaii,...]-fldcsea[seaii,...]
def pattcorr_withinensemble(ename,fdict,latlim=60,timesel='0002-01-01,0121-12-31'): """ pattcorr_withinensemble(ename,field,latlim=60) pattern corr each member of ensemble with each other one return pctable, pctablesea (DataFrames) """ # @@ need diffdict field=fdict['field'] ncfield=fdict['ncfield'] conv=fdict['conv'] seasons=('SON','DJF','MAM','JJA') if ename=='ANT': ename='histIC' elif ename=='TOT': ename='histBC' enssims = con.build_ensemblesims(ename) ensnum=len(enssims) print 'ENSSIMS: ' # @@@ print enssims # @@ # generate weights for the pattern corr lat = con.get_t63lat() lon = con.get_t63lon() areas = cutl.calc_cellareas(lat,lon) areas = areas[lat>latlim,:] weights = areas / np.sum(np.sum(areas,axis=1),axis=0) # ========= create diffdict first ===== diffdict={} seadiffdict={} for skey in enssims: fnamec,fnamep = con.build_filepathpair(skey,field) # monthly calc fldc = cnc.getNCvar(fnamec,ncfield,timesel=timesel)*conv fldp = cnc.getNCvar(fnamep,ncfield,timesel=timesel)*conv fldd = fldp-fldc # Monthly flddclimo,flddstd = cutl.climatologize(fldd) # climo first (don't need to do for BCs technically) #flddcclimo,flddcstd = cutl.climatologize(flddc) # climo first. baseline diff data diffdict[skey] = flddclimo print skey + ' ' + str(flddclimo.shape) # @@@ # Seasonal flddsea = np.zeros((4,len(lat),len(lon))) for seaii,sea in enumerate(seasons): fldcsea = np.mean(cnc.getNCvar(fnamec,ncfield,timesel=timesel,seas=sea)*conv,axis=0) fldpsea = np.mean(cnc.getNCvar(fnamep,ncfield,timesel=timesel,seas=sea)*conv,axis=0) flddsea[seaii,...] = fldpsea-fldcsea seadiffdict[skey] = flddsea # ======= Now do pattern corrs within ensemble ==== # ======= copied from Canam4_BCpatterncorr-Copy0.py =========== outterdict= dict.fromkeys(enssims) for skey1 in enssims: outfld = diffdict[skey1] innerdict = dict.fromkeys(enssims) for skey2 in enssims: #print skey1 + ' compared to ' + skey2 infld = diffdict[skey2] # for each month, compute pattern corr pc = np.zeros((12)) for mii,mon in enumerate(con.get_mon()): tmp = np.squeeze(infld[mii,lat>latlim,...]) tmpcmp = np.squeeze(outfld[mii,lat>latlim,...]) pc[mii] = cutl.pattcorr(tmp.flatten()*weights.flatten(), tmpcmp.flatten()*weights.flatten()) innerdict[skey2] = pc outterdict[skey1] = innerdict pctable = pd.DataFrame(outterdict) # 5x5 # seasonal outterdictsea= dict.fromkeys(enssims) for skey1 in enssims: outfld = seadiffdict[skey1] innerdictsea = dict.fromkeys(enssims) for skey2 in enssims: #print skey1 + ' compared to ' + skey2 infld = seadiffdict[skey2] # for each season, compute pattern corr pcsea = np.zeros((4)) for seaii,sea in enumerate(seasons): tmp = np.squeeze(infld[seaii,lat>latlim,...]) tmpcmp = np.squeeze(outfld[seaii,lat>latlim,...]) pcsea[seaii] = cutl.pattcorr(tmp.flatten()*weights.flatten(), tmpcmp.flatten()*weights.flatten()) innerdictsea[skey2] = pcsea outterdictsea[skey1] = innerdictsea pctablesea = pd.DataFrame(outterdictsea) # 5x5 return pctable, pctablesea