Пример #1
0
def test_flat_correct_norm_value_bad_value():
    ccd_data = ccd_data_func()
    # Test that flat_correct raises the appropriate error if
    # it is given a bad norm_value. Bad means <=0.

    # Create the flat, with some scatter
    data = np.random.normal(loc=1.0, scale=0.05, size=ccd_data.shape)
    flat = CCDData(data, meta=fits.Header(), unit=ccd_data.unit)
    with pytest.raises(ValueError) as e:
        flat_correct(ccd_data, flat, add_keyword=None, norm_value=-7)
    assert "norm_value must be" in str(e.value)
Пример #2
0
def test_flat_correct_min_value(data_scale=1, data_mean=5):
    ccd_data = ccd_data_func()
    size = ccd_data.shape[0]

    # Create the flat
    data = 2 * np.random.normal(loc=1.0, scale=0.05, size=(size, size))
    flat = CCDData(data, meta=fits.header.Header(), unit=ccd_data.unit)
    flat_orig_data = flat.data.copy()
    min_value = 2.1  # Should replace some, but not all, values
    flat_corrected_data = flat_correct(ccd_data, flat, min_value=min_value)
    flat_with_min = flat.copy()
    flat_with_min.data[flat_with_min.data < min_value] = min_value

    # Check that the flat was normalized. The asserts below, which look a
    # little odd, are correctly testing that
    #    flat_corrected_data = ccd_data / (flat_with_min / mean(flat_with_min))
    np.testing.assert_almost_equal(
        (flat_corrected_data.data * flat_with_min.data).mean(),
        (ccd_data.data * flat_with_min.data.mean()).mean())
    np.testing.assert_allclose(ccd_data.data / flat_corrected_data.data,
                               flat_with_min.data / flat_with_min.data.mean())

    # Test that flat is not modified.
    assert (flat_orig_data == flat.data).all()
    assert flat_orig_data is not flat.data
Пример #3
0
def test_flat_correct_does_not_change_input():
    ccd_data = ccd_data_func()
    original = ccd_data.copy()
    flat = CCDData(np.zeros_like(ccd_data), unit=ccd_data.unit)
    ccd = flat_correct(ccd_data, flat=flat)
    np.testing.assert_array_equal(original.data, ccd_data.data)
    assert original.unit == ccd_data.unit
Пример #4
0
def test_flat_correct_data_uncertainty():
    # Regression test for #345
    dat = CCDData(np.ones([100, 100]),
                  unit='adu',
                  uncertainty=np.ones([100, 100]))
    # Note flat is set to 10, error, if present, is set to one.
    flat = CCDData(10 * np.ones([100, 100]), unit='adu')
    res = flat_correct(dat, flat)
    assert (res.data == dat.data).all()
    assert (res.uncertainty.array == dat.uncertainty.array).all()
Пример #5
0
def test_flat_correct_deviation():
    ccd_data = ccd_data_func(data_scale=10, data_mean=300)
    size = ccd_data.shape[0]
    ccd_data.unit = u.electron
    ccd_data = create_deviation(ccd_data, readnoise=5 * u.electron)
    # Create the flat
    data = 2 * np.ones((size, size))
    flat = CCDData(data, meta=fits.header.Header(), unit=ccd_data.unit)
    flat = create_deviation(flat, readnoise=0.5 * u.electron)
    ccd_data = flat_correct(ccd_data, flat)
Пример #6
0
def test_flat_correct():
    ccd_data = ccd_data_func(data_scale=10)
    # Add metadata to header for a test below...
    ccd_data.header['my_key'] = 42
    size = ccd_data.shape[0]
    # create the flat, with some scatter
    data = 2 * np.random.normal(loc=1.0, scale=0.05, size=(size, size))
    flat = CCDData(data, meta=fits.header.Header(), unit=ccd_data.unit)
    flat_data = flat_correct(ccd_data, flat, add_keyword=None)

    # Check that the flat was normalized
    # Should be the case that flat * flat_data = ccd_data * flat.data.mean
    # if the normalization was done correctly.
    np.testing.assert_almost_equal((flat_data.data * flat.data).mean(),
                                   ccd_data.data.mean() * flat.data.mean())
    np.testing.assert_allclose(ccd_data.data / flat_data.data,
                               flat.data / flat.data.mean())

    # Check that metadata is unchanged (since logging is turned off)
    assert flat_data.header == ccd_data.header
Пример #7
0
def test_flat_correct_norm_value():
    ccd_data = ccd_data_func(data_scale=10)
    # Test flat correction with mean value that is different than
    # the mean of the flat frame.

    # Create the flat, with some scatter
    # Note that mean value of flat is set below and is different than
    # the mean of the flat data.
    flat_mean = 5.0
    data = np.random.normal(loc=1.0, scale=0.05, size=ccd_data.shape)
    flat = CCDData(data, meta=fits.Header(), unit=ccd_data.unit)
    flat_data = flat_correct(ccd_data,
                             flat,
                             add_keyword=None,
                             norm_value=flat_mean)

    # Check that the flat was normalized
    # Should be the case that flat * flat_data = ccd_data * flat_mean
    # if the normalization was done correctly.
    np.testing.assert_almost_equal((flat_data.data * flat.data).mean(),
                                   ccd_data.data.mean() * flat_mean)
    np.testing.assert_allclose(ccd_data.data / flat_data.data,
                               flat.data / flat_mean)