Пример #1
0
    def getDimMax(self, dataDim):

        if dataDim.className == 'SampledDataDim':
            r = float(dataDim.numPoints)
        else:
            converter = UnitConverter.pnt2ppm
            dataDimRef = ExperimentBasic.getPrimaryDataDimRef(dataDim)
            r = converter(1.0, dataDimRef)

        return r
Пример #2
0
  def getDimMax(self, spectrum, dim):

    dataDim = spectrum.findFirstDataDim(dim=dim)
    if dataDim.className == 'SampledDataDim':
      r = float(dataDim.numPoints)
    else:
      converter = UnitConverter.pnt2ppm
      dataDimRef = ExperimentBasic.getPrimaryDataDimRef(dataDim)
      r = converter(1.0, dataDimRef)

    return r
Пример #3
0
    def updateSpecPulldown(self):
        spectra = ExperimentBasic.getSpectra(self.project)
        names = []
        for spectrum in spectra:
            names.append("{}:{}".format(spectrum.experiment.name,
                                        spectrum.name))

        self.diaSpecPulldown.setup(names, spectra, 0)
        self.paraSpecPulldown.setup(names, spectra, 0)

        if len(spectra) > 1:
            self.diaSpec = spectra[0]
            self.paraSpec = spectra[1]
Пример #4
0
def possiblePeakAssigments(peak,
                           shiftRanges=None,
                           tolerances=None,
                           aliasing=True,
                           findAssigned=False):
    """ Get list of resonance that make possible assignments for a peak
  NB could be made more sophisticated
  NB does  not (yet) deal with TOCSY or intraresidue
  """

    dataSource = peak.peakList.dataSource
    numDim = dataSource.numDim
    if shiftRanges is None:
        shiftRanges = [None] * numDim
    if tolerances is None:
        tolerances = estimateAssignmentTolerances(dataSource)
        tolerances = [None] * numDim

    matchResDict = {}
    for ii, peakDim in enumerate(peak.sortedPeakDims()):
        ll = findMatchingPeakDimShifts(peakDim, shiftRanges[ii],
                                       tolerances[ii], aliasing, findAssigned)
        matchResDict[peakDim.dim] = set(x.resonance for x in ll)

    boundDimNos = []
    for dim1, dim2 in ExperimentBasic.getOnebondDataDims(dataSource):
        boundDimNos.append((dim1.dim, dim2.dim))

    # NBNB Multiple runs to guard against one dimension being bound to two others.
    changing = True
    while changing:
        changing = False
        for dimNo, resonances in matchResDict.items():
            for dimNo1, dimNo2 in boundDimNos:
                if dimNo == dimNo1:
                    set1 = set()
                    set2 = set()
                    for res1 in matchResDict[dimNo1]:
                        for res2 in matchResDict[dimNo2]:
                            if areResonancesBound(res1, res2):
                                set1.add(res1)
                                set2.add(res2)
                    if (len(set1) < len(matchResDict[dimNo1])
                            or len(set2) < len(matchResDict[dimNo2])):
                        changing = True
                        matchResDict[dimNo1] = set1
                        matchResDict[dimNo2] = set2

    #
    return [val for key, val in sorted(matchResDict.items())]
Пример #5
0
  def convertToPoints(self, spectrum, n, region):

    (rMin, rMax) = region
    dim = n + 1
    dataDim = spectrum.findFirstDataDim(dim=dim)

    if dataDim.className != 'SampledDataDim':
      converter = UnitConverter.ppm2pnt
      dataDimRef = ExperimentBasic.getPrimaryDataDimRef(dataDim)
      (rMin, rMax) = (converter(rMax, dataDimRef), converter(rMin, dataDimRef))
      rMin = max(1, rMin)
      rMax = min(dataDim.numPoints, rMax)
    rMin = rMin - 1
    rMin = int(rMin+0.5)
    rMax = int(rMax+0.5)

    if rMin >= rMax:
      raise Exception('in dimension %d have invalid region' % dim)

    return (rMin, rMax)
Пример #6
0
    def convertToPoints(self, dataDims, region):

        pointsRegion = []
        for i, dataDim in enumerate(dataDims):
            rMin, rMax = region[i]

            if dataDim.className != 'SampledDataDim':
                converter = UnitConverter.ppm2pnt
                dataDimRef = ExperimentBasic.getPrimaryDataDimRef(dataDim)
                rMin = converter(rMin, dataDimRef)
                rMax = converter(rMax, dataDimRef)
                rMin = max(1, rMin)
                rMax = min(dataDim.numPoints, rMax)

            rMin = rMin - 1
            rMax = rMax - 1

            if rMin > rMax:
                rMax, rMin = rMin, rMax

            pointsRegion.append((rMin, rMax))

        return pointsRegion
Пример #7
0
    def updateSpectrumTable(self, *extra):

        spectrum = self.spectrum

        textMatrix = []
        dataDims = []
        if spectrum:
            dataDims = spectrum.sortedDataDims()

        objectList = []
        for i in range(len(dataDims)):
            dataDim = dataDims[i]
            if isinstance(dataDim, Nmr.FreqDataDim):
                objectList.append(dataDim)
                textMatrix.append([
                    dataDim.dim,
                    ExperimentBasic.getPrimaryDataDimRef(
                        dataDim).expDimRef.isotopeCodes[0],
                    PeakFindParams.getPeakFindMinLinewidth(dataDim),
                    PeakFindParams.getPeakFindBoxwidth(dataDim)
                ])

        self.spectrumMatrix.update(objectList=objectList,
                                   textMatrix=textMatrix)
Пример #8
0
    def changeRegionPeakList(self, peakList):

        if peakList is self.regionFindPeakList:
            return

        if peakList and self.regionFindPeakList:
            spectrum1 = peakList.dataSource
            spectrum2 = self.regionFindPeakList.dataSource
            self.regionFindPeakList = peakList

            if spectrum1 is spectrum2:
                return

            if spectrum1.numDim == spectrum2.numDim:
                for n in range(spectrum1.numDim):
                    dim = n + 1
                    dataDim1 = spectrum1.findFirstDataDim(dim=dim)
                    dataDim2 = spectrum2.findFirstDataDim(dim=dim)
                    if dataDim1.className != dataDim2.className:
                        break

                    if (dataDim1.className
                            == 'FreqDataDim') and (dataDim2.className
                                                   == 'FreqDataDim'):
                        if ExperimentBasic.getPrimaryDataDimRef(
                                dataDim1
                        ).expDimRef.isotopeCodes != ExperimentBasic.getPrimaryDataDimRef(
                                dataDim2).expDimRef.isotopeCodes:
                            break
                else:
                    return  # just use what is there already as sensible default
        else:
            self.regionFindPeakList = peakList

        if peakList:
            spectrum = peakList.dataSource
            ndim = spectrum.numDim
            dataDims = spectrum.sortedDataDims()
        else:
            spectrum = None
            ndim = 0
            dataDims = []

        tipTexts = [
            'Whether to include or exclude the states region from region-wide peak picking',
        ]
        headingList = ['Condition']
        textRow = ['include']
        regionMin = []
        regionMax = []
        editWidgets = [self.conditionMenu] + 2 * ndim * [self.regionEntry]
        editGetCallbacks = [self.getCondition]
        editSetCallbacks = [self.setCondition]
        for dataDim in dataDims:
            dim = dataDim.dim
            headingList.extend(['Dim %d Min' % dim, 'Dim %d Max' % dim])
            tipTexts.append(
                'Lower value bound of peak picking inclusion/exclusion region for spectrum dimension %s'
                % dim)
            tipTexts.append(
                'Upper value bound of peak picking inclusion/exclusion region for spectrum dimension %s'
                % dim)
            (rMin, rMax) = self.getWholeRegion(dataDim)
            textRow.append(rMin)
            textRow.append(rMax)
            regionMin.append(rMin)
            regionMax.append(rMax)

            i = dim - 1
            editGetCallbacks.append(lambda row, i=i: self.getRegionMin(row, i))
            editGetCallbacks.append(lambda row, i=i: self.getRegionMax(row, i))
            editSetCallbacks.append(lambda row, i=i: self.setRegionMin(row, i))
            editSetCallbacks.append(lambda row, i=i: self.setRegionMax(row, i))

        condition = RegionCondition('include', regionMin, regionMax)
        objectList = [condition]
        textMatrix = [textRow]
        self.regionConditions = [condition]
        self.regionFindMatrix.update(objectList=objectList,
                                     textMatrix=textMatrix,
                                     headingList=headingList,
                                     tipTexts=tipTexts,
                                     editSetCallbacks=editSetCallbacks,
                                     editGetCallbacks=editGetCallbacks,
                                     editWidgets=editWidgets)
Пример #9
0
def assignSpecNonRootResonances(rootPeaks,
                                targetPeakList,
                                tolerances=None,
                                diagTolerance=0.5,
                                waterMinPpm=4.88,
                                waterMaxPpm=4.92,
                                progressBar=None,
                                assignType=False,
                                refExpsCO=None):
    """Descrn: 
     Inputs: 
     Output: 
  """
    peaks, dimMapping = pickAssignSpecFromRoot(rootPeaks,
                                               targetPeakList,
                                               tolerances=tolerances,
                                               progressBar=progressBar,
                                               pickNew=False)

    spectrum = targetPeakList.dataSource
    targetDataDim = None
    rootDataDims = set()
    for dataDim in spectrum.dataDims:
        if dataDim.dim in dimMapping.values():
            rootDataDims.add(dataDim.dim)
        else:
            targetDataDim = dataDim

    if targetDataDim is None:
        msg = 'No non-root dimension found for %s:%s'
        showWarning('Failure', msg % (spectrum.experiment.name, spectrum.name))

    resonances = assignDimNewResonances(peaks,
                                        targetDataDim.dim,
                                        diagTolerance=diagTolerance,
                                        waterMinPpm=waterMinPpm,
                                        waterMaxPpm=waterMaxPpm,
                                        assignType=assignType)
    if not refExpsCO:
        refExps, refExpsCO = ExperimentBasic.getSeqAssignRefExperiments(
            targetPeakList.root)

    refExperiment = targetPeakList.dataSource.experiment.refExperiment

    if refExperiment in refExpsCO:
        resonances2 = set([r for r in resonances if not r.resonanceGroup])

        rootSpinSystems = set()
        for peak in peaks:
            for peakDim in peak.peakDims:
                if peakDim.dim in rootDataDims:
                    for contrib in peakDim.peakDimContribs:
                        spinSystem = contrib.resonance.resonanceGroup

                        if spinSystem:
                            rootSpinSystems.add(spinSystem)

        if len(rootSpinSystems) == 1:
            rootSpinSystem = rootSpinSystems.pop()
            prevSpinSystem = findConnectedSpinSystem(rootSpinSystem, delta=-1)

            if not prevSpinSystem:
                prevSpinSystem = rootSpinSystem.nmrProject.newResonanceGroup()
                makeSeqSpinSystemLink(prevSpinSystem, rootSpinSystem, delta=1)

            resonances2.update(prevSpinSystem.resonances)
            prevSpinSystem.setResonances(resonances2)
Пример #10
0
def initialiseAmideExpts(argServer, hsqc=None, tocsy=None, noesy=None):

    func = ExperimentBasic.getPrimaryDataDimRef

    xDim = 1

    peakSize = (0.09, 0.49)

    ratio = peakSize[0] / peakSize[1]
    tol = peakSize[0] / 5.0

    minPpmH = 6.0
    maxPpmH = 9.84

    waterRegion = [4.90, 4.92]

    #tocsy = argServer.getSpectrum()

    #nhsqcPl = getBlankPeakList(nhsqc)
    #tocsyPl = getBlankPeakList(tocsy)
    #noesyPl = getBlankPeakList(noesy)

    noesyPl = argServer.getPeakList()
    noesy = noesyPl.dataSource

    tocsyPl = argServer.getPeakList()
    tocsy = noesyPl.dataSource

    dataDims = noesy.sortedDataDims()

    if not noesyPl.peaks:
        print "Picking new NOE peaks"
        wholeRegion = [[
            pnt2ppm(dd.numPointsOrig, func(dd)),
            pnt2ppm(0, func(dd))
        ] for dd in dataDims]
        excludeRegion = [[0, dd.numPointsOrig] for dd in dataDims]

        dataDimRef = func(dataDims[xDim])
        excludeRegion[xDim] = [
            ppm2pnt(waterRegion[0], dataDimRef),
            ppm2pnt(waterRegion[1], dataDimRef)
        ]

        findPeaks(
            noesyPl,
            wholeRegion,
            argServer.parent,
            [1, 1, 1],
        )

    if not tocsyPl.peaks:
        print "Picking new TOCSY peaks"
        wholeRegion = [[
            pnt2ppm(dd.numPointsOrig, func(dd)),
            pnt2ppm(0, func(dd))
        ] for dd in dataDims]
        excludeRegion = [[0, dd.numPointsOrig] for dd in dataDims]

        dataDimRef = func(dataDims[xDim])
        excludeRegion[xDim] = [
            ppm2pnt(waterRegion[0], dataDimRef),
            ppm2pnt(waterRegion[1], dataDimRef)
        ]

        findPeaks(
            tocsyPl,
            wholeRegion,
            argServer.parent,
            [1, 1, 1],
        )

    nhsqcPl = argServer.getPeakList()
    nhsqc = nhsqcPl.dataSource

    noise = ExperimentBasic.getNoiseEstimate(nhsqc) * 2.0

    dataDims = nhsqc.sortedDataDims()
    dd0 = dataDims[0]
    dd1 = dataDims[1]

    ddr0 = ExperimentBasic.getPrimaryDataDimRef(dd0)
    ddr1 = ExperimentBasic.getPrimaryDataDimRef(dd1)

    print "Initial NOESY filter"
    amides = []

    allPeaks = list(noesyPl.peaks)
    allPeaks.extend(tocsyPl.peaks)

    for peak in allPeaks:
        peakDims = peak.sortedPeakDims()
        ppm0 = peakDims[0].value
        ppm2 = peakDims[2].value

        pnt0 = ppm2pnt(ppm0, ddr0)
        pnt1 = ppm2pnt(ppm2, ddr1)

        if ppm0 < minPpmH:
            peak.delete()
            continue

        if ppm0 > maxPpmH:
            peak.delete()
            continue

        if (pnt0 - 1 < 0) or (pnt0 > dd0.numPointsOrig):
            peak.delete()
            continue

        if (pnt1 - 1 < 0) or (pnt1 > dd1.numPointsOrig):
            peak.delete()
            continue

        height1 = nhsqc.block_file.getValue((pnt0 - 1, pnt1))
        height2 = nhsqc.block_file.getValue((pnt0, pnt1 - 1))
        height3 = nhsqc.block_file.getValue((pnt0 - 1, pnt1 - 1))
        height4 = nhsqc.block_file.getValue((pnt0, pnt1))

        if height1 < noise:
            peak.delete()
            continue
        if height2 < noise:
            peak.delete()
            continue
        if height3 < noise:
            peak.delete()
            continue
        if height4 < noise:
            peak.delete()
            continue

        if peak.peakList is noesyPl:
            amides.append((peak, ppm0, ppm2))

        peak.ppmH = ppm0
        peak.ppmN = ppm2

    print "Cluster %d amides" % len(amides)
    cluster = {}
    for i in range(len(amides) - 1):
        if i and i % 100 == 0:
            print i
        peak1, ppm0, ppm1 = amides[i]
        if cluster.get(peak1) is None:
            cluster[peak1] = [peak1]

        for j in range(i + 1, len(amides)):
            peak2, ppm2, ppm3 = amides[j]
            if peak1 is peak2:
                continue

            if cluster.get(peak2) is None:
                cluster[peak2] = [peak2]

            if cluster[peak1] == cluster[peak2]:
                continue

            deltaH = ppm2 - ppm0
            deltaN = ratio * (ppm3 - ppm1)
            delta = sqrt((deltaH * deltaH) + (deltaN * deltaN))

            if (delta <= tol):
                cluster[peak1].extend(cluster[peak2])

                for peak3 in cluster[peak2]:
                    cluster[peak3] = cluster[peak1]

    print "Remove isolated peaks"
    clusters2 = {}
    for peak in cluster.keys():
        c = cluster[peak]
        if len(c) < 2:
            peak.delete()
            del c
        else:
            clusters2[c[0]] = c

    clusters = clusters2.values()

    ss = {}
    centres = []
    print "Check for overlapped clusters"
    for peaks in clusters:

        p = peaks[0]
        print 'CLUSTER', p.ppmH, p.ppmN

        for n in range(1):
            print 'Iteration', n
            f = 0.30
            tolF = tol * f

            cluster = {}
            cluster2 = {}
            M = 0
            for i in range(len(peaks) - 1):

                peak1 = peaks[i]
                if cluster.get(peak1) is None:
                    cluster[peak1] = [peak1]
                    cluster2[peak1] = M
                    M += 1

                for j in range(i + 1, len(peaks)):
                    peak2 = peaks[j]
                    if peak1 is peak2:
                        continue

                    if cluster.get(peak2) is None:
                        cluster[peak2] = [peak2]
                        cluster2[peak2] = M
                        M += 1

                    if cluster2[peak1] == cluster2[peak2]:
                        continue

                    deltaH = peak1.ppmH - peak2.ppmH
                    deltaN = ratio * (peak1.ppmN - peak2.ppmN)
                    delta = sqrt((deltaH * deltaH) + (deltaN * deltaN))

                    if delta <= tolF:
                        cluster[peak1].extend(cluster[peak2])

                        for peak3 in cluster[peak2]:
                            cluster[peak3] = cluster[peak1]
                            cluster2[peak3] = cluster2[peak1]

            cluster3 = []
            for i in range(M):
                cluster3.append([])

            for peak in peaks:
                cluster3[cluster2[peak]].append(peak)

            print '  F %3f' % (f),
            for i in range(M):
                N = float(len(cluster3[i]))
                if N > 1.0:
                    aveH = 0.0
                    aveN = 0.0
                    for peak in cluster3[i]:
                        aveH += peak.ppmH
                        aveN += peak.ppmN

                    aveH /= N
                    aveN /= N
                    hsqcPeak = pickPeak(nhsqcPl, (aveH, aveN), unit='ppm')

                    centres.append([hsqcPeak, aveH, aveN])
                    ss[hsqcPeak] = []
                    print len(cluster3[i]),

    print "Assign 15N HSQC"
    #assignAllNewResonances(peaks=nhsqcPl.peaks)
    #assignSpinSystemPerPeak(peaks=nhsqcPl.peaks)

    print "Assign NOESY & TOCSY"
    for peak in allPeaks:
        minDist = tol
        best = centres[0][0]
        for hsqcPeak, aveH, aveN in centres:
            deltaH = peak.ppmH - aveH
            deltaN = ratio * (peak.ppmN - aveN)
            delta = sqrt((deltaH * deltaH) + (deltaN * deltaN))

            if delta < minDist:
                minDist = delta
                best = hsqcPeak

        ss[best].append(peak)

    for hsqcPeak in ss.keys():
        peaks = ss[hsqcPeak]
Пример #11
0
def pickAssignSpecFromRoot(rootPeaks,
                           targetPeakList,
                           tolerances=None,
                           progressBar=None,
                           pickNew=True,
                           diagTolerance=None,
                           waterExclusion=None):
    """Descrn: Pick peaks in a spectrum based upon a root peak list
             and assign picked peaks to root resonances.
     Inputs: List of Nmr.Peaks, Nmr.PeakList, List of Floats (target dim order),
             memops.gui.ProgressBar, Boolean, Float or None,
             2-Tuple of Floats (min, max) or None
     Output: Nmr.Peaks, Dict of Int:Int (dim mapping root:target)
  """

    # TBD: perhaps a list of peaks rather than a set should be passed in
    rootPeakList = tuple(rootPeaks)[0].peakList
    project = rootPeakList.root

    spectrum0 = rootPeakList.dataSource
    spectrum1 = targetPeakList.dataSource

    if not tolerances:
        tolerances = []
        for dataDim in spectrum1.sortedDataDims():
            tolerances.append(getAnalysisDataDim(dataDim).assignTolerance)

    expDimRefs0 = ExperimentBasic.getOnebondExpDimRefs(spectrum0.experiment)
    expDimRefs1 = ExperimentBasic.getOnebondExpDimRefs(spectrum1.experiment)

    if not expDimRefs0:
        msg = 'Spectrum %s:%s has no directly bonded dims.'
        showWarning('Failure',
                    msg % (spectrum0.experiment.name, spectrum0.name))
        return

    if not expDimRefs1:
        msg = 'Spectrum %s:%s has no directly bonded dims.'
        showWarning('Failure',
                    msg % (spectrum1.experiment.name, spectrum1.name))
        return

    # could really do with a generic get matching dataDims function

    # TBD try PeakBasic.getDataDimMapping()

    dimMapping = {}

    for expDimRef0, expDimRef1 in expDimRefs0:
        dataDim0 = spectrum0.findFirstDataDim(expDim=expDimRef0.expDim)
        dataDim1 = spectrum0.findFirstDataDim(expDim=expDimRef1.expDim)
        isotopes0 = expDimRef0.isotopeCodes
        isotopes1 = expDimRef1.isotopeCodes
        if '1H' in isotopes0 or '1H' in isotopes1:
            break

    boundDims = set([dataDim0.dim, dataDim1.dim])

    for expDimRef2, expDimRef3 in expDimRefs1:

        isotopes2 = expDimRef2.isotopeCodes
        isotopes3 = expDimRef3.isotopeCodes
        dataDim2 = spectrum1.findFirstDataDim(expDim=expDimRef2.expDim)
        dataDim3 = spectrum1.findFirstDataDim(expDim=expDimRef3.expDim)

        if not (dataDim2 and dataDim3):
            continue

        if (isotopes0 == isotopes2) and (isotopes1 == isotopes3):
            dimMapping[dataDim0.dim] = dataDim2.dim
            dimMapping[dataDim1.dim] = dataDim3.dim
            break

        elif (isotopes0 == isotopes3) and (isotopes1 == isotopes2):
            dimMapping[dataDim0.dim] = dataDim3.dim
            dimMapping[dataDim1.dim] = dataDim2.dim
            break

    if not dimMapping:
        msg = 'Could not find equivalent dims in spectra %s:%s & %s:%s'
        data = (spectrum0.experiment.name, spectrum0.name,
                spectrum1.experiment.name, spectrum1.name)
        showWarning('Failure', msg % data)
        return

    if progressBar:
        progressBar.total = len(rootPeaks)
        progressBar.set(0)
        progressBar.open()

    fullRegion = []
    getDimRef = ExperimentBasic.getPrimaryDataDimRef
    targetDims = targetPeakList.dataSource.sortedDataDims()
    targetDims = [(getDimRef(dd), dd) for dd in targetDims]
    targetIsotopes = [
        ','.join(ddr.expDimRef.isotopeCodes) for (ddr, dd) in targetDims
    ]

    for dataDimRef, dataDim in targetDims:
        valueMax = pnt2ppm(1, dataDimRef)
        valueMin = pnt2ppm(dataDim.numPoints, dataDimRef)
        fullRegion.append([valueMin, valueMax])

    foundPeaks = []
    for peak in rootPeaks:

        peakRegion = list(fullRegion)
        rootIsotopes = []
        rootMapDims = set()
        values = []

        boundPeakDims = [
            pd for pd in peak.sortedPeakDims() if pd.dim in boundDims
        ]

        for i, peakDim in enumerate(boundPeakDims):
            error = tolerances[i]
            value = peakDim.value
            j = dimMapping[peakDim.dim] - 1
            peakRegion[j] = (value - error, value + error)

            rootIsotopes.append(targetIsotopes[j])
            rootMapDims.add(j)
            values.append(value)

        regions = [
            peakRegion,
        ]
        if diagTolerance:
            for i, isotopes in enumerate(targetIsotopes):
                if (i not in rootMapDims) and (isotopes in rootIsotopes):
                    value = values[rootIsotopes.index(isotopes)]

                    # Chop in two at diagonal
                    regions2 = []
                    for region in regions:
                        regionA = list(region)
                        regionB = list(region)
                        valueMin, valueMax = region[i]
                        regionA[i] = (valueMin, value - diagTolerance)
                        regionB[i] = (value + diagTolerance, valueMax)
                        regions2.append(regionA)
                        regions2.append(regionB)

                    regions = regions2

        if waterExclusion:
            waterMin, waterMax = waterExclusion
            for i, isotopes in enumerate(targetIsotopes):
                if (i not in rootMapDims) and (isotopes in rootIsotopes):
                    regions2 = []

                    # Chop at water
                    for region in regions:
                        valueMin, valueMax = region[i]

                        if valueMin < waterMin < valueMax:
                            regionA = list(region)
                            regionA[i] = (valueMin, waterMin)
                            regions2.append(regionA)

                            if valueMin < waterMax < valueMax:
                                regionB = list(region)
                                regionB[i] = (waterMax, valueMax)
                                regions2.append(regionB)

                        elif valueMin < waterMax < valueMax:
                            regionB = list(region)
                            regionB[i] = (waterMax, valueMax)
                            regions2.append(regionB)

                        else:
                            regions2.append(region)

                    regions = regions2

        peaks = []
        for region in regions:
            peaks.extend(searchPeaks([
                targetPeakList,
            ], region))

            if pickNew:
                peaks.extend(findPeaks(targetPeakList, region))

        # possible to grow the region here if no peaks are found

        for peak2 in peaks:
            for intens in peak.peakIntensities:
                if str(intens.value) == 'inf':
                    peaks.remove(peak2)
                    peak2.delete()
                    break

        foundPeaks.extend(peaks)

        for i, peakDim in enumerate(boundPeakDims):
            dim2 = dimMapping[peakDim.dim]
            resonances = [c.resonance for c in peakDim.peakDimContribs]
            tolerance = tolerances[i]

            for peak2 in peaks:
                peakDim2 = peak2.findFirstPeakDim(dim=dim2)
                if not peakDim2.peakDimContribs:
                    for resonance in resonances:
                        assignResToDim(peakDim2,
                                       resonance,
                                       tolerance=10 * tolerance,
                                       doWarning=False)

        if progressBar:
            progressBar.increment()

    if progressBar:
        progressBar.close()

    return foundPeaks, dimMapping