from dotenv import load_dotenv from sqlalchemy import create_engine from sqlalchemy.orm import subqueryload from cdcrapp.services import UserService, TaskService from cdcrapp.model import Task, NewsArticle, SciPaper, UserTask # %% def get_sql_engine(): return create_engine(os.getenv("SQLALCHEMY_DB_URI")) load_dotenv() _engine = get_sql_engine() _usersvc: UserService = UserService(_engine) _tasksvc: TaskService = TaskService(_engine) # %% # collect sets of documents that our task should be limited to # the 'definitive' CD^2CR corpus is from 31/7/20 sci_docs = [] news_docs = [] for seg in ['dev', 'test', 'train']: with open(f"mentions/31_07_20_5pc/{seg}_entities.json") as f: data = json.load(f) for ent in data: _, doc_type, doc_id = ent['doc_id'].split("_")
def __init__(self): self.engine: Engine = create_engine(os.getenv("SQLALCHEMY_DB_URI")) self.usersvc: UserService = UserService(self.engine) self.tasksvc: TaskService = TaskService(self.engine)