Пример #1
0
    def draw_annotation_images(self,
                               plate,
                               training_set,
                               container,
                               learner,
                               rid=""):
        cldir = dict([(cname, join(learner.samples_dir, cname)) \
                          for cname in learner.class_names.values()])
        # create dir per class name
        for dir_ in cldir.values():
            makedirs(dir_)

        for obj in training_set.itervalues():
            rgb_value = ccore.RGBValue(*hex2rgb(obj.strHexColor))

            file_ = 'PL%s___P%s___T%05d___X%04d___Y%04d' \
                %(plate, self.P, self._iT,
                  obj.oCenterAbs[0], obj.oCenterAbs[1])
            obj.file = file_
            file_ = join(cldir[obj.strClassName],
                         '%s___%s.png' % (file_, rid + "_%s"))
            container.exportObject(obj.iId, file_ % "img", file_ % "msk")
            container.markObjects([obj.iId], rgb_value, False, True)
            ccore.drawFilledCircle(ccore.Diff2D(*obj.oCenterAbs), 3,
                                   container.img_rgb, rgb_value)
Пример #2
0
    def render_tracks(self, frame, size, n=5, thick=True, radius=3):
        img_conn = ccore.Image(*size)
        img_split = ccore.Image(*size)

        if n < 0 or frame - n + 1 < self.start_frame:
            current = self.start_frame
            n = frame - current + 1
        else:
            current = frame - n + 1

        found = False
        for i in range(n):
            col = int(max(255. * (i + 1) / n, 255))

            if current in self._frame_data:
                preframe = self.closest_preceding_frame(current)
                if preframe is not None:
                    found = True
                    for objIdP in self._frame_data[preframe]:
                        nodeIdP = self.node_id(preframe, objIdP)
                        objP = self.graph.node_data(nodeIdP)

                        if self.graph.out_degree(nodeIdP) > 1:
                            img = img_split
                        else:
                            img = img_conn

                        for edgeId in self.graph.out_arcs(nodeIdP):
                            nodeIdC = self.graph.tail(edgeId)
                            objC = self.graph.node_data(nodeIdC)
                            ccore.drawLine(ccore.Diff2D(*objP.oCenterAbs),
                                           ccore.Diff2D(*objC.oCenterAbs),
                                           img,
                                           col,
                                           thick=thick)
                            ccore.drawFilledCircle(
                                ccore.Diff2D(*objC.oCenterAbs), radius,
                                img_conn, col)
            current += 1

        if not found and frame in self._frame_data:
            for objId in self._frame_data[frame]:
                nodeId = self.node_id(frame, objId)
                obj = self.graph.node_data(nodeId)
                ccore.drawFilledCircle(ccore.Diff2D(*obj.oCenterAbs), radius,
                                       img_conn, col)

        return img_conn, img_split
Пример #3
0
    def render_tracks(self, frame, size, n=5, thick=True, radius=3):
        img_conn = ccore.Image(*size)
        img_split = ccore.Image(*size)

        if n < 0 or frame-n+1 < self.start_frame:
            current = self.start_frame
            n = frame-current+1
        else:
            current = frame-n+1

        found = False
        for i in range(n):
            col = int(max(255.*(i+1)/n, 255))

            if current in self._frame_data:
                preframe = self.closest_preceding_frame(current)
                if preframe is not None:
                    found = True
                    for objIdP in self._frame_data[preframe]:
                        nodeIdP = self.node_id(preframe, objIdP)
                        objP = self.graph.node_data(nodeIdP)

                        if self.graph.out_degree(nodeIdP) > 1:
                            img = img_split
                        else:
                            img = img_conn

                        for edgeId in self.graph.out_arcs(nodeIdP):
                            nodeIdC = self.graph.tail(edgeId)
                            objC = self.graph.node_data(nodeIdC)
                            ccore.drawLine(ccore.Diff2D(*objP.oCenterAbs),
                                           ccore.Diff2D(*objC.oCenterAbs),
                                           img, col,
                                           thick=thick)
                            ccore.drawFilledCircle(ccore.Diff2D(*objC.oCenterAbs),
                                                   radius, img_conn, col)
            current += 1

        if not found and frame in self._frame_data:
            for objId in self._frame_data[frame]:
                nodeId = self.node_id(frame, objId)
                obj = self.graph.node_data(nodeId)
                ccore.drawFilledCircle(ccore.Diff2D(*obj.oCenterAbs),
                                       radius, img_conn, col)

        return img_conn, img_split
Пример #4
0
    def draw_annotation_images(self, plate, training_set, container, learner, rid=""):
        cldir = dict([(cname, join(learner.samples_dir, cname)) \
                          for cname in learner.class_names.values()])
        # create dir per class name
        for dir_ in cldir.values():
            makedirs(dir_)

        for obj in training_set.itervalues():
            rgb_value = ccore.RGBValue(*hex2rgb(obj.strHexColor))

            file_ = 'PL%s___P%s___T%05d___X%04d___Y%04d' \
                %(plate, self.P, self._iT,
                  obj.oCenterAbs[0], obj.oCenterAbs[1])
            obj.file = file_
            file_ = join(cldir[obj.strClassName],
                         '%s___%s.png' %(file_, rid+"_%s"))
            container.exportObject(obj.iId, file_ %"img", file_ %"msk")
            container.markObjects([obj.iId], rgb_value, False, True)
            ccore.drawFilledCircle(ccore.Diff2D(*obj.oCenterAbs),
                                   3, container.img_rgb, rgb_value)
Пример #5
0
    def collectObjects(self, plate_id, P, lstReader, oLearner, byTime=True):

        #channel_name = oLearner.strChannelId
        strRegionId = oLearner.strRegionId
        img_rgb = None

        self._oLogger.debug('* collecting samples...')

#        bSuccess = True
#        channels = sorted(self._channel_registry.values())
#        primary_cChannel = None
#        for channel2 in lstChannels:
#
#            self.time_holder.prepare_raw_image(channel)
#            self.time_holder.apply_segmentation(oChannel2, oPrimaryChannel)
#
#            if oPrimaryChannel is None:
#                assert oChannel2.RANK == 1
#                oPrimaryChannel = oChannel2
        self.process(apply = False, extract_features = False)

        # self._channel_registry
        oChannel = self._channel_registry[oLearner.channel_name]
        oContainer = oChannel.get_container(strRegionId)
        objects = oContainer.getObjects()

        object_lookup = {}
        for oReader in lstReader:
            lstCoordinates = None
            if (byTime and P == oReader.getPosition() and self._iT in oReader):
                lstCoordinates = oReader[self._iT]
            elif (not byTime and P in oReader):
                lstCoordinates = oReader[P]
            #print "moo", P, oReader.getPosition(), byTime, self._iT in oReader
            #print lstCoordinates, byTime, self.P, oReader.keys()

            if not lstCoordinates is None:
                #print self.iP, self._iT, lstCoordinates
                for dctData in lstCoordinates:
                    label = dctData['iClassLabel']
                    if (label in oLearner.dctClassNames and
                        dctData['iPosX'] >= 0 and
                        dctData['iPosX'] < oContainer.width and
                        dctData['iPosY'] >= 0 and
                        dctData['iPosY'] < oContainer.height):

                        center1 = ccore.Diff2D(dctData['iPosX'],
                                               dctData['iPosY'])

                        # test for obj_id "under" annotated pixel first
                        obj_id = oContainer.img_labels[center1]

                        # if not background: valid obj_id found
                        if obj_id > 0:
                            dict_append_list(object_lookup, label, obj_id)

                        # otherwise try to find nearest object in a search
                        # radius of 30 pixel (compatibility with CellCounter)
                        else:
                            dists = []
                            for obj_id, obj in objects.iteritems():
                                diff = obj.oCenterAbs - center1
                                dist_sq = diff.squaredMagnitude()
                                # limit to 30 pixel radius
                                if dist_sq < 900:
                                    dists.append((obj_id, dist_sq))
                            if len(dists) > 0:
                                dists.sort(lambda a,b: cmp(a[1], b[1]))
                                obj_id = dists[0][0]
                                dict_append_list(object_lookup, label, obj_id)

        object_ids = set(flatten(object_lookup.values()))
        objects_del = set(objects.keys()) - object_ids
        for obj_id in objects_del:
            oContainer.delObject(obj_id)

        self.time_holder.apply_features(oChannel)
        region = oChannel.get_region(strRegionId)

        learner_objects = []
        for label, object_ids in object_lookup.iteritems():
            class_name = oLearner.dctClassNames[label]
            hex_color = oLearner.dctHexColors[class_name]
            rgb_value = ccore.RGBValue(*hexToRgb(hex_color))
            for obj_id in object_ids:
                obj = region[obj_id]
                obj.iLabel = label
                obj.strClassName = class_name
                obj.strHexColor = hex_color

                if (obj.oRoi.upperLeft[0] >= 0 and
                    obj.oRoi.upperLeft[1] >= 0 and
                    obj.oRoi.lowerRight[0] < oContainer.width and
                    obj.oRoi.lowerRight[1] < oContainer.height):
                    iCenterX, iCenterY = obj.oCenterAbs

                    strPathOutLabel = os.path.join(oLearner.dctEnvPaths['samples'],
                                                   oLearner.dctClassNames[label])
                    safe_mkdirs(strPathOutLabel)

                    strFilenameBase = 'PL%s___P%s___T%05d___X%04d___Y%04d' % (plate_id, self.P, self._iT, iCenterX, iCenterY)

                    obj.sample_id = strFilenameBase
                    learner_objects.append(obj)

                    strFilenameImg = os.path.join(strPathOutLabel, '%s___img.png' % strFilenameBase)
                    strFilenameMsk = os.path.join(strPathOutLabel, '%s___msk.png' % strFilenameBase)
                    # FIXME: export Objects is segfaulting for objects
                    #        where its bounding box is touching the border
                    #        i.e. one corner point equals zero!
                    oContainer.exportObject(obj_id,
                                            strFilenameImg,
                                            strFilenameMsk)

                    oContainer.markObjects([obj_id], rgb_value, False, True)

                    #print obj_id, obj.oCenterAbs, iCenterX, iCenterY
                    print '*** CSdebug: drawFilledCircle', iCenterX, iCenterY
                    ccore.drawFilledCircle(ccore.Diff2D(iCenterX, iCenterY),
                                           3, oContainer.img_rgb, rgb_value)


        if len(learner_objects) > 0:
            oLearner.applyObjects(learner_objects)
            # we don't want to apply None for feature names
            oLearner.setFeatureNames(oChannel.lstFeatureNames)

        strPathOut = os.path.join(oLearner.dctEnvPaths['controls'])
        safe_mkdirs(strPathOut)
        oContainer.exportRGB(os.path.join(strPathOut,
                                          "P%s_T%05d_C%s_R%s.jpg" %\
                                           (self.P, self._iT, oLearner.strChannelId, oLearner.strRegionId)),
                            '90')
        img_rgb = oContainer.img_rgb
        return img_rgb