def parser(): parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser = curation_parser(parser) parser = cellfinder_parse.pixel_parser(parser) parser = cellfinder_parse.misc_parse(parser) parser = cellfinder_parse.cube_extract_parse(parser) return parser
def cells_standard_space_cli_parser(): parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser = cli_parse(parser) parser = cellfinder_parse.pixel_parser(parser) parser = cellfinder_parse.standard_space_parse(parser) parser = cellfinder_parse.misc_parse(parser) return parser
def training_parse(): from cellfinder.tools.parser import misc_parse from cellfinder.download.cli import model_parser, download_directory_parser training_parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter) training_parser.add_argument( "-y", "--yaml", dest="yaml_file", nargs="+", required=True, type=str, help="The path to the yaml run file.", ) training_parser.add_argument( "-o", "--output-dir", dest="output_dir", required=True, type=str, help="Output directory for the final model.", ) training_parser.add_argument( "--continue-training", dest="continue_training", action="store_true", help="Continue training from an existing trained model. If no model " "or model weights are specified, this will continue from the " "included model.", ) training_parser.add_argument( "--trained-model", dest="trained_model", type=str, help="Path to the trained model", ) training_parser.add_argument( "--model-weights", dest="model_weights", type=str, help="Path to existing model weights", ) training_parser.add_argument( "--network-depth", dest="network_depth", type=valid_model_depth, default="50", help="Resnet depth (based on He et al. (2015)", ) training_parser.add_argument( "--batch-size", dest="batch_size", type=check_positive_int, default=16, help="Training batch size", ) training_parser.add_argument( "--epochs", dest="epochs", type=check_positive_int, default=100, help="Number of training epochs", ) training_parser.add_argument( "--test-fraction", dest="test_fraction", type=float, default=0.1, help="Fraction of training data to use for validation", ) training_parser.add_argument( "--learning-rate", dest="learning_rate", type=check_positive_float, default=0.0001, help="Learning rate for training the model", ) training_parser.add_argument( "--no-augment", dest="no_augment", action="store_true", help="Don't apply data augmentation", ) training_parser.add_argument( "--save-weights", dest="save_weights", action="store_true", help="Only store the model weights, and not the full model. Useful to " "save storage space.", ) training_parser.add_argument( "--no-save-checkpoints", dest="no_save_checkpoints", action="store_true", help="Store the model at intermediate points during training", ) training_parser.add_argument( "--tensorboard", action="store_true", help="Log to output_directory/tensorboard", ) training_parser.add_argument( "--save-progress", dest="save_progress", action="store_true", help="Save training progress to a .csv file", ) training_parser = misc_parse(training_parser) training_parser = model_parser(training_parser) training_parser = download_directory_parser(training_parser) args = training_parser.parse_args() return args