Пример #1
0
def test_class_2D(data_dir, image_names):
    clear_output(data_dir, image_names)
    img = io.imread(str(data_dir.joinpath('2D').joinpath('rgb_2D.png')))
    model_types = ['nuclei']
    chan = [1]
    chan2 = [0]
    for m,model_type in enumerate(model_types):
        model = models.Cellpose(model_type=model_type)
        masks, flows, _, _ = model.eval(img, diameter=0, channels=[chan[m],chan2[m]], net_avg=False)
        io.imsave(str(data_dir.joinpath('2D').joinpath('rgb_2D_cp_masks.png')), masks)
        compare_masks(data_dir, ['rgb_2D.png'], '2D', model_type)
        clear_output(data_dir, image_names)
        if MATPLOTLIB:
            fig = plt.figure(figsize=(8,3))
            plot.show_segmentation(fig, img, masks, flows[0], channels=[chan[m],chan2[m]])
Пример #2
0
    def disp_2d_slice(self):
        """Display 3D segmentation results squeezed along z-axis"""
        # squeeze 3D prediction along z-axis,
        # assign unique integers to individual predictions
        pred = self.masks  # prediction of 3D segmentation
        pred_squeezed = (pred.sum(0) > 0).astype(np.uint8)
        pred_labels, n_cells = ndi.label(pred_squeezed)

        fig = plt.figure(figsize=(12, 5))
        img_2d = self.frame[self.n_layers // 2].astype(np.float)
        if self.multi_channel:
            img_2d = self._rgb2gray(img_2d)
        cp_plot.show_segmentation(fig,
                                  img_2d,
                                  pred_labels,
                                  self.flows,
                                  channels=self.channels)
        plt.tight_layout()
        plt.show()
Пример #3
0
def save_to_png(images, masks, flows, file_names):
    """ save nicely plotted segmentation image to png """
    nimg = len(images)
    for n in range(nimg):
        img = images[n].copy()
        if img.ndim < 3:
            img = img[:, :, np.newaxis]
        elif img.shape[0] < 8:
            np.transpose(img, (1, 2, 0))
        base = os.path.splitext(file_names[n])[0]
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            skimage.io.imsave(base + '_cp_masks.png',
                              masks[n].astype(np.uint16))
        maski = masks[n]
        flowi = flows[n][0]
        fig = plt.figure(figsize=(12, 3))
        # can save images (set save_dir=None if not)
        plot.show_segmentation(fig, img, maski, flowi)
        fig.savefig(base + '_cp.png', dpi=300)
        plt.close(fig)
Пример #4
0
def main(inputs, img_path, img_format, output_dir):
    """
    Parameter
    ---------
    inputs : str
        File path to galaxy tool parameter
    img_path : str
        File path for the input image
    img_format : str
        One of the ['ome.tiff', 'tiff', 'png', 'jpg']
    output_dir : str
        Folder to save the outputs.
    """
    warnings.simplefilter('ignore')

    with open(inputs, 'r') as param_handler:
        params = json.load(param_handler)

    gpu = params['use_gpu']
    omni = params['omni']
    model_selector = params['model_selector']
    model_type = model_selector['model_type']
    chan = model_selector['chan']
    chan2 = model_selector['chan2']
    if chan is None:
        channels = None
    else:
        channels = [int(chan), int(chan2) if chan2 is not None else None]

    options = params['options']

    img = skimage.io.imread(img_path)

    print(f"Image shape: {img.shape}")
    # transpose to Ly x Lx x nchann and reshape based on channels
    if img_format.endswith('tiff') and params['channel_first']:
        img = np.transpose(img, (1, 2, 0))
        img = transforms.reshape(img, channels=channels)
        channels = [1, 2]

    print(f"Image shape: {img.shape}")
    model = models.Cellpose(gpu=gpu,
                            model_type=model_type,
                            net_avg=options['net_avg'],
                            omni=omni)
    masks, flows, styles, diams = model.eval(img,
                                             channels=channels,
                                             omni=omni,
                                             **options)

    # save masks to tiff
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        skimage.io.imsave(os.path.join(output_dir, 'cp_masks.tif'),
                          masks.astype(np.uint16))

    # make segmentation show #
    if params['show_segmentation']:
        img = skimage.io.imread(img_path)
        # uniform image
        if img_format.endswith('tiff') and params['channel_first']:
            img = np.transpose(img, (1, 2, 0))
            img = transforms.reshape(img, channels=channels)
            channels = [1, 2]

        maski = masks
        flowi = flows[0]
        fig = plt.figure(figsize=(12, 3))
        # can save images (set save_dir=None if not)
        plot.show_segmentation(fig, img, maski, flowi, channels=channels)
        fig.savefig(os.path.join(output_dir, 'segm_show.png'), dpi=300)
        plt.close(fig)
Пример #5
0
def cellpose_predict(data, config, path_save, callback_log=None):
    """ Perform prediction with CellPose. 

    Parameters
    ----------
    data : dict
        Contains data on which prediction should be performed. 
    config : dict
        Configuration of CellPose prediction. 
    path_save : pathline Path object
        Path where results will be saved. 
    """

    # Get data
    imgs = data['imgs']
    file_names = data['file_names']
    sizes_orginal = data['sizes_orginal']
    channels = data['channels']
    new_size = data['new_size']
    obj_name = data['obj_name']

    # Get config
    model_type = config['model_type']
    obj_size = config['obj_size']
    device = config['device']

    log_message(f'\nPerforming segmentation of {obj_name}\n',
                callback_fun=callback_log)

    start_time = time.time()

    if not path_save.is_dir():
        path_save.mkdir()

    # Perform segmentation with CellPose
    model = models.Cellpose(
        device, model_type=model_type)  # model_type can be 'cyto' or 'nuclei'
    masks, flows, styles, diams = model.eval(imgs,
                                             diameter=obj_size,
                                             channels=channels)

    # Display and save results
    log_message(f'\n Creating outputs ...\n', callback_fun=callback_log)
    n_img = len(imgs)

    for idx in tqdm(range(n_img)):
        file_name = file_names[idx]
        maski = masks[idx]
        flowi = flows[idx][0]
        imgi = imgs[idx]

        # Rescale each channel separately
        imgi_rescale = imgi.copy()

        for idim in range(3):
            imgdum = imgi[:, :, idim]
            pa, pb = np.percentile(imgdum, (0.1, 99.9))
            imgi_rescale[:, :, idim] = rescale_intensity(
                imgdum, in_range=(pa, pb), out_range=np.uint8).astype('uint8')

        # Save overview image
        fig = plt.figure(figsize=(12, 3))
        plot.show_segmentation(fig,
                               imgi_rescale.astype('uint8'),
                               maski,
                               flowi,
                               channels=channels)
        plt.tight_layout()

        plt.savefig(path_save / f'{file_name.stem}__segment__{obj_name}.png',
                    dpi=600)
        plt.close()

        # Save mask and flow images
        imsave(path_save / f'{file_name.stem}__flow__{obj_name}.png',
               flowi,
               check_contrast=False)

        if new_size:
            mask_full = resize_mask(maski, sizes_orginal[idx])

            imsave(path_save / f'{file_name.stem}__mask__{obj_name}.png',
                   mask_full.astype('uint16'),
                   check_contrast=False)
            imsave(path_save /
                   f'{file_name.stem}__mask_resize__{obj_name}.png',
                   maski.astype('uint16'),
                   check_contrast=False)

        else:
            imsave(path_save / f'{file_name.stem}__mask__{obj_name}.png',
                   maski.astype('uint16'),
                   check_contrast=False)

    log_message(
        f"\nSegmentation of provided images finished ({(time.time() - start_time)}s)",
        callback_fun=callback_log)
Пример #6
0
# if diameter is set to None, the size of the cells is estimated on a per image basis
# you can set the average cell `diameter` in pixels yourself (recommended) 
# diameter can be a list or a single number for all images
masks, flows, styles, diams = model.eval(imgs, diameter=diameter, channels=channels,cellprob_threshold= cellprob_threshold,flow_threshold=flow_threshold)


# DISPLAY RESULTS
from cellpose import plot

nimg = len(imgs)
for idx in range(nimg):
    maski = masks[idx]
    flowi = flows[idx][0]

    fig = plt.figure(figsize = (25,15))
    plot.show_segmentation(fig, imgs[idx], maski, flowi, channels=channels[idx])
    plt.savefig(os.path.join(summary_path,img_list[idx].replace('.tif','') +'_summary.png'),format = 'png',dpi = 216,bbox_inches = 'tight')
    plt.close()


## EXTRACT COORDINATE FOR EACH ROI

# reload imgs
imgs = [skimage.io.imread(os.path.join(img_path,f)) for f in img_list]

import pandas as pd
# detecting center of mass for each mask and creating a 2d-array as a roi image
centers = [[list(ndimage.center_of_mass((np.ones(mask.shape)*[mask == k])[0])) for k in np.unique(mask)[1:]] for idx,mask in enumerate(masks)]
dfs = []
rois = []
for c,center in enumerate(centers):
Пример #7
0
def cellpose_predict(data, config, path_save, callback_log=None):
    """ Perform prediction with CellPose. 

    Parameters
    ----------
    data : dict
        Contains data on which prediction should be performed. 
    config : dict
        Configuration of CellPose prediction. 
    path_save : pathline Path object
        Path where results will be saved. 
    """

    # Get data
    imgs = data['imgs']
    file_names = data['file_names']
    channels = data['channels']
    obj_name = data['obj_name']
    sizes_orginal = data['sizes_orginal']
    new_size = data['new_size']

    # Get config
    model_type = config['model_type']
    diameter = config['diameter']
    net_avg = config['net_avg']
    resample = config['resample']

    log_message(f'\nPerforming segmentation of {obj_name}\n',
                callback_fun=callback_log)

    start_time = time.time()

    if not path_save.is_dir():
        path_save.mkdir()

    # Perform segmentation with CellPose
    model = models.Cellpose(
        gpu=False,
        model_type=model_type)  # model_type can be 'cyto' or 'nuclei'
    masks, flows, styles, diams = model.eval(imgs,
                                             diameter=diameter,
                                             channels=channels,
                                             net_avg=net_avg,
                                             resample=resample)

    # Display and save results
    log_message(f'\n Creating outputs ...\n', callback_fun=callback_log)
    n_img = len(imgs)

    for idx in tqdm(range(n_img)):

        # Get images and file-name
        file_name = file_names[idx]
        maski = masks[idx]
        flowi = flows[idx][0]
        imgi = imgs[idx]

        # Rescale each channel separately
        imgi_norm = imgi.copy()
        for idim in range(3):
            imgdum = imgi[:, :, idim]

            # Renormalize to 8bit between 1 and 99 percentile
            pa = np.percentile(imgdum, 0.5)
            pb = np.percentile(imgdum, 99.5)

            if pb > pa:
                imgi_norm[:, :, idim] = 255 * (imgdum - pa) / (pb - pa)

        # Save flow
        io.imsave(str(path_save / f'{file_name.stem}__flow__{obj_name}.png'),
                  flowi)

        # Resize masks if necessary
        if new_size:
            mask_full = resize_mask(maski, sizes_orginal[idx])

            io.imsave(
                str(path_save / f'{file_name.stem}__mask__{obj_name}.png'),
                mask_full)
            io.imsave(
                str(path_save /
                    f'{file_name.stem}__mask_resize__{obj_name}.png'), maski)

        else:
            io.imsave(
                str(path_save / f'{file_name.stem}__mask__{obj_name}.png'),
                maski)

        # Save mask and flow images
        #f_mask = str(path_save / f'{file_name.stem}__mask__{obj_name}.png')
        #log_message(f'\nMask saved to file: {f_mask}\n', callback_fun=callback_log)

        #io.imsave(str(path_save / f'{file_name.stem}__mask__{obj_name}.png'), maski)

        # Save overview image
        fig = plt.figure(figsize=(12, 3))
        plot.show_segmentation(fig, imgi_norm.astype('uint8'), maski, flowi)
        plt.tight_layout()
        fig.savefig(str(path_save / f'{file_name.stem}__seg__{obj_name}.png'),
                    dpi=300)
        plt.close(fig)

    log_message(
        f"\nSegmentation of provided images finished ({(time.time() - start_time)}s)",
        callback_fun=callback_log)