def do_labels(self, labels):
     '''Run whatever transformation on the given labels matrix'''
     if (self.operation in (O_SHRINK, O_SHRINK_INF) and 
         self.wants_fill_holes.value):
         labels = fill_labeled_holes(labels) 
         
     if self.operation == O_SHRINK_INF:
         return binary_shrink(labels)
     elif self.operation == O_SHRINK:
         return binary_shrink(labels, iterations = self.iterations.value)
     elif self.operation in (O_EXPAND, O_EXPAND_INF):
         if self.operation == O_EXPAND_INF:
             distance = np.max(labels.shape)
         else:
             distance = self.iterations.value
         background = labels == 0
         distances, (i,j) = distance_transform_edt(background, 
                                                   return_indices = True)
         out_labels = labels.copy()
         mask = (background & (distances <= distance))
         out_labels[mask] = labels[i[mask],j[mask]]
         return out_labels
     elif self.operation == O_DIVIDE:
         #
         # A pixel must be adjacent to some other label and the object
         # must not disappear.
         #
         adjacent_mask = adjacent(labels)
         thinnable_mask = binary_shrink(labels, 1) != 0
         out_labels = labels.copy()
         out_labels[adjacent_mask & ~ thinnable_mask] = 0
         return out_labels
     elif self.operation == O_SKELETONIZE:
         return skeletonize_labels(labels)
     elif self.operation == O_SPUR:
         return spur(labels, iterations=self.iterations.value)
     else:
         raise NotImplementedError("Unsupported operation: %s" %
                                   self.operation.value)
 def do_labels(self, labels):
     '''Run whatever transformation on the given labels matrix'''
     if (self.operation in (O_SHRINK, O_SHRINK_INF) and 
         self.wants_fill_holes.value):
         labels = fill_labeled_holes(labels) 
         
     if self.operation == O_SHRINK_INF:
         return binary_shrink(labels)
     elif self.operation == O_SHRINK:
         return binary_shrink(labels, iterations = self.iterations.value)
     elif self.operation in (O_EXPAND, O_EXPAND_INF):
         if self.operation == O_EXPAND_INF:
             distance = np.max(labels.shape)
         else:
             distance = self.iterations.value
         background = labels == 0
         distances, (i,j) = distance_transform_edt(background, 
                                                   return_indices = True)
         out_labels = labels.copy()
         mask = (background & (distances <= distance))
         out_labels[mask] = labels[i[mask],j[mask]]
         return out_labels
     elif self.operation == O_DIVIDE:
         #
         # A pixel must be adjacent to some other label and the object
         # must not disappear.
         #
         adjacent_mask = adjacent(labels)
         thinnable_mask = binary_shrink(labels, 1) != 0
         out_labels = labels.copy()
         out_labels[adjacent_mask & ~ thinnable_mask] = 0
         return out_labels
     elif self.operation == O_SKELETONIZE:
         return skeletonize_labels(labels)
     elif self.operation == O_SPUR:
         return spur(labels, iterations=self.iterations.value)
     else:
         raise NotImplementedError("Unsupported operation: %s" %
                                   self.operation.value)
Пример #3
0
 def test_01_02_run(self):
     module = instantiate_module(MODULE_NAME)
     module.input_objects_name.value = INPUT_OBJECTS_NAME
     module.output_objects_name.value = OUTPUT_OBJECTS_NAME
     module.module_num = 1
     pipeline = cpp.Pipeline()
     pipeline.add_module(module)
     
     object_set = cpo.ObjectSet()
     #
     # Pick a bunch of random points, dilate them using the distance
     # transform and then label the result.
     #
     r = np.random.RandomState()
     r.seed(12)
     bimg = np.ones((100, 100), bool)
     bimg[r.randint(0,100, 50), r.randint(0, 100, 50)] = False
     labels, count = label(distance_transform_edt(bimg) <= 5)
     #
     # Make the input objects
     #
     input_objects = cpo.Objects()
     input_objects.segmented = labels
     expected = skeletonize_labels(labels)
     object_set.add_objects(input_objects, INPUT_OBJECTS_NAME)
     #
     # Make the workspace
     #
     workspace = cpw.Workspace(pipeline, module, None, object_set,
                               cpmeas.Measurements(), None)
     module.run(workspace)
     
     self.assertTrue(OUTPUT_OBJECTS_NAME in object_set.object_names,
                     "Could not find the output objects in the object set")
     output_objects = object_set.get_objects(OUTPUT_OBJECTS_NAME)
     np.testing.assert_array_equal(expected, output_objects.segmented)
Пример #4
0
    def test_01_02_run(self):
        module = instantiate_module(MODULE_NAME)
        module.input_objects_name.value = INPUT_OBJECTS_NAME
        module.output_objects_name.value = OUTPUT_OBJECTS_NAME
        module.module_num = 1
        pipeline = cpp.Pipeline()
        pipeline.add_module(module)

        object_set = cpo.ObjectSet()
        #
        # Pick a bunch of random points, dilate them using the distance
        # transform and then label the result.
        #
        r = np.random.RandomState()
        r.seed(12)
        bimg = np.ones((100, 100), bool)
        bimg[r.randint(0, 100, 50), r.randint(0, 100, 50)] = False
        labels, count = label(distance_transform_edt(bimg) <= 5)
        #
        # Make the input objects
        #
        input_objects = cpo.Objects()
        input_objects.segmented = labels
        expected = skeletonize_labels(labels)
        object_set.add_objects(input_objects, INPUT_OBJECTS_NAME)
        #
        # Make the workspace
        #
        workspace = cpw.Workspace(pipeline, module, None, object_set,
                                  cpmeas.Measurements(), None)
        module.run(workspace)

        self.assertTrue(OUTPUT_OBJECTS_NAME in object_set.object_names,
                        "Could not find the output objects in the object set")
        output_objects = object_set.get_objects(OUTPUT_OBJECTS_NAME)
        np.testing.assert_array_equal(expected, output_objects.segmented)
Пример #5
0
 def run(self, workspace):
     m = workspace.measurements
     objects = workspace.object_set.get_objects(self.objects_name.value)
     assert isinstance(objects, cpo.Objects)
     labels = objects.segmented
     
     benchmarks = dict([(x, np.zeros(objects.count, int))
                        for x in M_ALL])
     ii, jj = np.mgrid[0: objects.shape[0], 0:objects.shape[1]]
     benchmarks[M_INTEGER_PLANAR_RAW][:] = np.prod(labels.shape) * 2 / objects.count
     b = libtiff.tif_lzw.encode(labels)
     benchmarks[M_INTEGER_PLANAR][:] = len(b) / objects.count
     #
     # Do distance transform in pieces in case objects touch
     #
     distance = np.zeros(objects.shape, np.float32)
     clabels = color_labels(labels)
     for i in range(1, np.max(clabels)+1):
         mask = clabels == i
         distance[mask] = distance_transform_edt(mask)[mask]
     maskj = np.zeros((objects.shape[0], objects.shape[1]+1), bool)
     skel = skeletonize_labels(labels)
     skel_composite = []
     rle_composite = []
     ij_composite = []
     for i in range(1, objects.count+1):
         mask = labels == i
         maskj[:, :-1] = mask
         (imin, imax), (jmin, jmax) = [[f(d) for f in (np.min, np.max)]
                                       for d in (ii[mask], jj[mask])]
         #
         ####################
         #
         # Binary planar
         #
         benchmarks[M_BINARY_PLANAR_RAW][i-1] = (imax - imin + 1) * (jmax - jmin + 1)
         b = libtiff.tif_lzw.encode(mask[imin:(imax+1), jmin:(jmax+1)])
         #
         # Compressed + 16-bit origin & size
         #
         benchmarks[M_BINARY_PLANAR][i-1] = len(b) + 8
         #
         ####################
         #
         # RLE encoded
         #
         fm = (~ maskj[:, :-1]) & maskj[:, 1:]
         lm = maskj[:, :-1] & ~ maskj[:, 1:]
         iif = ii[fm]
         jjf = jj[fm] + 1
         iil = ii[lm]
         jjl = jj[lm] + 1
         order = np.lexsort((iif, jjf))
         iif, jjf = iif[order], jjf[order]
         order = np.lexsort((iil, jjl))
         iil, jjl = iil[order], jjl[order]
         data = np.column_stack((iif, jjf, jjl - jjf + 1))
         benchmarks[M_RLE_RAW][i-1] = np.prod(data.shape) * 2
         rle_composite.append(data)
         b = self.compress((data[:, 0], data[:, 1], data[:, 2]))
         benchmarks[M_RLE][i-1] = len(b)
         #
         ###################
         #
         # IJ
         #
         data = np.column_stack((ii[mask], jj[mask]))
         order = np.lexsort((jj[mask], ii[mask]))
         data = data[order, :]
         ij_composite.append(data)
         benchmarks[M_IJ_RAW][i-1] = np.prod(data.shape) * 2
         b = self.compress((data[:, 0], data[:, 1]))
         benchmarks[M_IJ][i-1] = len(b)
         
         skmask = skel == i
         iii = ii[skmask]
         jjj = jj[skmask]
         ddd = distance[skmask]
         order = np.lexsort((jjj, iii))
         data = np.rec.array((iii[order], jjj[order], ddd[order]),
                             dtype = [("i", np.uint16), ("j", np.uint16),
                                      ("d", np.float32)])
         benchmarks[M_SKEL_RAW][i-1] = len(data.tostring())
         b = self.compress((data["i"], data["j"], data["d"]))
         benchmarks[M_SKEL][i-1] = len(b)
         skel_composite.append(data)
         
     for data, idxs, ftr in (
         (np.vstack(ij_composite).transpose(), (0, 1), M_IJ_COMPOSITE),
         (np.vstack(rle_composite).transpose(), (0, 1, 2), M_RLE_COMPOSITE),
         (np.hstack(skel_composite), ("i", "j", "d"), M_SKEL_COMPOSITE)):
         b = self.compress([data[idx] for idx in idxs])
         benchmarks[ftr][:] = len(b) / objects.count + 4
     for key in benchmarks:
         m.add_measurement(self.objects_name.value, key, benchmarks[key])
Пример #6
0
 def test_01_02_run(self):
     module = instantiate_module(MODULE_NAME)
     module.input_objects_name.value = INPUT_OBJECTS_NAME
     module.output_objects_name.value = OUTPUT_OBJECTS_NAME
     module.module_num = 1
     pipeline = cpp.Pipeline()
     pipeline.add_module(module)
     
     object_set = cpo.ObjectSet()
     #
     # Pick a bunch of random points, dilate them using the distance
     # transform and then label the result.
     #
     r = np.random.RandomState()
     r.seed(12)
     bimg = np.ones((100, 100), bool)
     bimg[r.randint(0,100, 50), r.randint(0, 100, 50)] = False
     labels, count = label(distance_transform_edt(bimg) <= 5)
     #
     # Make the input objects
     #
     input_objects = cpo.Objects()
     input_objects.segmented = labels
     expected = skeletonize_labels(labels)
     object_set.add_objects(input_objects, INPUT_OBJECTS_NAME)
     #
     # Make the workspace
     #
     measurements = cpmeas.Measurements()
     workspace = cpw.Workspace(pipeline, module, None, object_set,
                               measurements, None)
     module.run(workspace)
     #
     # Calculate the centers using Numpy. Scipy can do this too.
     # But maybe it's instructive to show you how to go at the labels
     # matrix using Numpy.
     #
     # We're going to get the centroids by taking the average value
     # of x and y per object.
     #
     y, x = np.mgrid[0:labels.shape[0], 0:labels.shape[1]].astype(float)
     #
     # np.bincount counts the number of occurrences of each integer value.
     # You need to operate on a 1d array - if you flatten the labels
     # and weights, their pixels still align.
     #
     # We do [1:] to discard the background which is labeled 0
     #
     # The optional second argument to np.bincount is the "weight". For
     # each label value, maintain a running sum of the weights.
     #
     areas = np.bincount(expected.flatten())[1:]
     total_x = np.bincount(expected.flatten(), weights=x.flatten())[1:]
     total_y = np.bincount(expected.flatten(), weights=y.flatten())[1:]
     expected_location_x = total_x / areas
     expected_location_y = total_y / areas
     #
     # Now check against the measurements.
     #
     count_feature = I.C_COUNT + "_" + OUTPUT_OBJECTS_NAME
     self.assertTrue(measurements.has_feature(cpmeas.IMAGE, count_feature),
                     "Your module did not produce a %s measurement" %
                     count_feature)
     count = measurements.get_measurement(cpmeas.IMAGE, count_feature)
     self.assertEqual(count, len(areas))
     for ftr, expected in ((I.M_LOCATION_CENTER_X, expected_location_x),
                           (I.M_LOCATION_CENTER_Y, expected_location_y)):
         self.assertTrue(measurements.has_feature(
             OUTPUT_OBJECTS_NAME, ftr))
         location = measurements.get_measurement(OUTPUT_OBJECTS_NAME, ftr)
         np.testing.assert_almost_equal(location, expected)
Пример #7
0
 def run(self, workspace):
     #
     # This is unfortunate... sorry. example4b.py is imported during the
     # import of cellprofiler.modules. This means that the import of
     # cellprofiler.modules.identify can't be done in this module's import
     #
     import cellprofiler.modules.identify as I
     #
     # The object_set keeps track of the objects produced during a cycle
     #
     # Crucial methods:
     #
     # object_set.get_objects(name) returns an instance of cpo.Objects
     #
     # object_set.add(objects, name) adds objects with the given name to
     #           the object set
     #
     #
     # Create objects in three steps:
     #     make a labels matrix
     #     create an instance of cpo.Objects()
     #     set cpo.Objects.segmented = labels matrix
     #
     # You can be "nicer" by giving more information, but this is not
     # absolutely necessary. See subsequent exercises for how to be nice.
     #     
     object_set = workspace.object_set
     input_objects = object_set.get_objects(self.input_objects_name.value)
     labels = skeletonize_labels(input_objects.segmented)
     output_objects = cpo.Objects()
     output_objects.segmented = labels
     output_objects_name = self.output_objects_name.value
     object_set.add_objects(output_objects, output_objects_name)
     
     ##measurements = workspace.measurements
     #
     # The cpo.Objects has several useful properties that are calculated
     # and remembered: count and area are the ones most frequently used.
     # count is the # of objects in the segmentation
     # 
     ##n_objects = output_objects.count
     #
     # cellprofiler.module.identify has some helper methods for adding
     # measurements in a standardized fashion. add_object_count_measurements
     # only adds one measurement: Count_<objects-name>
     #
     ##I.add_object_count_measurements(measurements, output_objects_name,
     ##                                n_objects)
     #
     # cellprofiler.modules.identify.add_object_location_measurements
     # computes the center of mass for each object in the labels matrix
     # and records those in the object measurement, Location_Center_X
     # and Location_Center_Y. These measurements are used by data mining
     # programs such as CellProfiler Analyst to center an image on a
     # particular cell.
     #
     ##I.add_object_location_measurements(
     ##    measurements, output_objects_name, labels, n_objects)
     if workspace.show_frame:
         workspace.display_data.input_labels = input_objects.segmented
         workspace.display_data.output_labels = labels