def run_image(self, image_name, scale, angle, workspace): '''Run measurements on image''' statistics = [] image = workspace.image_set.get_image(image_name, must_be_grayscale=True) pixel_data = image.pixel_data image_labels = np.ones(pixel_data.shape, int) if image.has_mask: image_labels[~image.mask] = 0 scale_i, scale_j = self.get_angle_ij(angle, scale) for name, value in zip( F_HARALICK, Haralick(pixel_data, image_labels, scale_i, scale_j).all()): statistics += self.record_image_measurement( workspace, image_name, str(scale) + "_" + H_TO_A[angle], name, value) return statistics
def run_one(self, image_name, object_name, scale, angle, workspace): """Run, computing the area measurements for a single map of objects""" statistics = [] image = workspace.image_set.get_image(image_name, must_be_grayscale=True) objects = workspace.get_objects(object_name) pixel_data = image.pixel_data if image.has_mask: mask = image.mask else: mask = None labels = objects.segmented try: pixel_data = objects.crop_image_similarly(pixel_data) except ValueError: # # Recover by cropping the image to the labels # pixel_data, m1 = cpo.size_similarly(labels, pixel_data) if np.any(~m1): if mask is None: mask = m1 else: mask, m2 = cpo.size_similarly(labels, mask) mask[~m2] = False if np.all(labels == 0): for name in F_HARALICK: statistics += self.record_measurement( workspace, image_name, object_name, str(scale) + "_" + H_TO_A[angle], name, np.zeros((0, ))) else: scale_i, scale_j = self.get_angle_ij(angle, scale) for name, value in zip( F_HARALICK, Haralick(pixel_data, labels, scale_i, scale_j, mask=mask).all()): statistics += self.record_measurement( workspace, image_name, object_name, str(scale) + "_" + H_TO_A[angle], name, value) return statistics