Пример #1
0
 def run_image(self, image_name, scale, angle, workspace):
     '''Run measurements on image'''
     statistics = []
     image = workspace.image_set.get_image(image_name,
                                           must_be_grayscale=True)
     pixel_data = image.pixel_data
     image_labels = np.ones(pixel_data.shape, int)
     if image.has_mask:
         image_labels[~image.mask] = 0
     scale_i, scale_j = self.get_angle_ij(angle, scale)
     for name, value in zip(
             F_HARALICK,
             Haralick(pixel_data, image_labels, scale_i, scale_j).all()):
         statistics += self.record_image_measurement(
             workspace, image_name,
             str(scale) + "_" + H_TO_A[angle], name, value)
     return statistics
Пример #2
0
    def run_one(self, image_name, object_name, scale, angle, workspace):
        """Run, computing the area measurements for a single map of objects"""
        statistics = []
        image = workspace.image_set.get_image(image_name,
                                              must_be_grayscale=True)
        objects = workspace.get_objects(object_name)
        pixel_data = image.pixel_data
        if image.has_mask:
            mask = image.mask
        else:
            mask = None
        labels = objects.segmented
        try:
            pixel_data = objects.crop_image_similarly(pixel_data)
        except ValueError:
            #
            # Recover by cropping the image to the labels
            #
            pixel_data, m1 = cpo.size_similarly(labels, pixel_data)
            if np.any(~m1):
                if mask is None:
                    mask = m1
                else:
                    mask, m2 = cpo.size_similarly(labels, mask)
                    mask[~m2] = False

        if np.all(labels == 0):
            for name in F_HARALICK:
                statistics += self.record_measurement(
                    workspace, image_name, object_name,
                    str(scale) + "_" + H_TO_A[angle], name, np.zeros((0, )))
        else:
            scale_i, scale_j = self.get_angle_ij(angle, scale)

            for name, value in zip(
                    F_HARALICK,
                    Haralick(pixel_data, labels, scale_i, scale_j,
                             mask=mask).all()):
                statistics += self.record_measurement(
                    workspace, image_name, object_name,
                    str(scale) + "_" + H_TO_A[angle], name, value)
        return statistics