def make_obj_workspace(self, ground_truth_obj, id_obj, ground_truth, id):
        '''make a workspace to test comparing objects'''
        ''' ground truth object and ID object  are dictionaires w/ the following keys'''
        '''i - i component of pixel coordinates
        j - j component of pixel coordinates
        l - label '''

        module = C.CalculateImageOverlap()
        module.module_num = 1
        module.obj_or_img.value = O_OBJ
        module.object_name_GT.value = GROUND_TRUTH_OBJ
        module.img_obj_found_in_GT.value = GROUND_TRUTH_OBJ_IMAGE_NAME
        module.object_name_ID.value = ID_OBJ
        module.img_obj_found_in_ID.value = ID_OBJ_IMAGE_NAME
        pipeline = cpp.Pipeline()

        def callback(caller, event):
            self.assertFalse(isinstance(event, cpp.RunExceptionEvent))

        pipeline.add_listener(callback)
        pipeline.add_module(module)
        image_set_list = cpi.ImageSetList()
        image_set = image_set_list.get_image_set(0)

        for name, d in ((GROUND_TRUTH_OBJ_IMAGE_NAME, ground_truth),
                        (ID_OBJ_IMAGE_NAME, id)):
            image = cpi.Image(d["image"],
                              mask=d.get("mask"),
                              crop_mask=d.get("crop_mask"))
            image_set.add(name, image)
        object_set = cpo.ObjectSet()
        for name, d in ((GROUND_TRUTH_OBJ, ground_truth_obj), (ID_OBJ,
                                                               id_obj)):
            object = cpo.Objects()
            if d.shape[1] == 3:
                object.ijv = d
            else:
                object.segmented = d
            object_set.add_objects(object, name)
        workspace = cpw.Workspace(pipeline, module, image_set, object_set,
                                  cpmeas.Measurements(), image_set_list)
        return workspace, module
Пример #2
0
    def make_workspace(self, ground_truth, test):
        '''Make a workspace with a ground-truth image and a test image

        ground_truth and test are dictionaries with the following keys:
        image     - the pixel data
        mask      - (optional) the mask data
        crop_mask - (optional) a cropping mask

        returns a workspace and module
        '''
        module = C.CalculateImageOverlap()
        module.module_num = 1
        module.obj_or_img.value = O_IMG
        module.ground_truth.value = GROUND_TRUTH_IMAGE_NAME
        module.test_img.value = TEST_IMAGE_NAME
        module.wants_emd.value = True

        pipeline = cpp.Pipeline()

        def callback(caller, event):
            self.assertFalse(isinstance(event, cpp.RunExceptionEvent))

        pipeline.add_listener(callback)
        pipeline.add_module(module)

        image_set_list = cpi.ImageSetList()
        image_set = image_set_list.get_image_set(0)

        for name, d in ((GROUND_TRUTH_IMAGE_NAME, ground_truth),
                        (TEST_IMAGE_NAME, test)):
            image = cpi.Image(d["image"],
                              mask=d.get("mask"),
                              crop_mask=d.get("crop_mask"))
            image_set.add(name, image)

        workspace = cpw.Workspace(pipeline, module, image_set, cpo.ObjectSet(),
                                  cpmeas.Measurements(), image_set_list)
        return workspace, module