def run(self, workspace): """Find the outlines on the current image set workspace - The workspace contains pipeline - instance of cpp for this run image_set - the images in the image set being processed object_set - the objects (labeled masks) in this image set measurements - the measurements for this run frame - the parent frame to whatever frame is created. None means don't draw. """ gridding = workspace.get_grid(self.grid_name.value) if self.shape_choice == SHAPE_RECTANGLE: labels = self.run_rectangle(workspace, gridding) elif self.shape_choice == SHAPE_CIRCLE_FORCED: labels = self.run_forced_circle(workspace, gridding) elif self.shape_choice == SHAPE_CIRCLE_NATURAL: labels = self.run_natural_circle(workspace, gridding) elif self.shape_choice == SHAPE_NATURAL: labels = self.run_natural(workspace, gridding) objects = cpo.Objects() objects.segmented = labels object_count = gridding.rows * gridding.columns workspace.object_set.add_objects(objects, self.output_objects_name.value) add_object_location_measurements( workspace.measurements, self.output_objects_name.value, labels, object_count ) add_object_count_measurements( workspace.measurements, self.output_objects_name.value, object_count ) if self.show_window: workspace.display_data.gridding = gridding workspace.display_data.labels = labels
def run(self, workspace): input_objects = workspace.object_set.get_objects( self.object_name.value) output_objects = cpo.Objects() output_objects.segmented = self.do_labels(input_objects.segmented) if input_objects.has_small_removed_segmented: output_objects.small_removed_segmented = self.do_labels( input_objects.small_removed_segmented) if input_objects.has_unedited_segmented: output_objects.unedited_segmented = self.do_labels( input_objects.unedited_segmented) workspace.object_set.add_objects(output_objects, self.output_object_name.value) add_object_count_measurements( workspace.measurements, self.output_object_name.value, np.max(output_objects.segmented), ) add_object_location_measurements( workspace.measurements, self.output_object_name.value, output_objects.segmented, ) if self.show_window: workspace.display_data.input_objects_segmented = input_objects.segmented workspace.display_data.output_objects_segmented = output_objects.segmented
def run(self, workspace): image_name = self.image_name.value objects_name = self.objects_name.value image = workspace.image_set.get_image(image_name) pixel_data = image.pixel_data labels = workspace.interaction_request( self, pixel_data, workspace.measurements.image_set_number ) if labels is None: # User cancelled. Soldier on as best we can. workspace.cancel_request() labels = np.zeros(pixel_data.shape[:2], int) objects = cpo.Objects() objects.segmented = labels workspace.object_set.add_objects(objects, objects_name) ################## # # Add measurements # m = workspace.measurements # # The object count # object_count = np.max(labels) I.add_object_count_measurements(m, objects_name, object_count) # # The object locations # I.add_object_location_measurements(m, objects_name, labels) workspace.display_data.labels = labels workspace.display_data.pixel_data = pixel_data
def run(self, workspace): objects_name = self.objects_name.value objects = workspace.object_set.get_objects(objects_name) assert isinstance(objects, cpo.Objects) labels = objects.segmented if self.relabel_option == OPTION_SPLIT: output_labels, count = scind.label(labels > 0, np.ones((3, 3), bool)) else: if self.merge_option == UNIFY_DISTANCE: mask = labels > 0 if self.distance_threshold.value > 0: # # Take the distance transform of the reverse of the mask # and figure out what points are less than 1/2 of the # distance from an object. # d = scind.distance_transform_edt(~mask) mask = d < self.distance_threshold.value / 2 + 1 output_labels, count = scind.label(mask, np.ones((3, 3), bool)) output_labels[labels == 0] = 0 if self.wants_image: output_labels = self.filter_using_image(workspace, mask) elif self.merge_option == UNIFY_PARENT: parents_name = self.parent_object.value parents_of = workspace.measurements[objects_name, "_".join( (C_PARENT, parents_name))] output_labels = labels.copy().astype(np.uint32) output_labels[labels > 0] = parents_of[labels[labels > 0] - 1] if self.merging_method == UM_CONVEX_HULL: ch_pts, n_pts = morph.convex_hull(output_labels) ijv = morph.fill_convex_hulls(ch_pts, n_pts) output_labels[ijv[:, 0], ijv[:, 1]] = ijv[:, 2] output_objects = cpo.Objects() output_objects.segmented = output_labels if objects.has_small_removed_segmented: output_objects.small_removed_segmented = copy_labels( objects.small_removed_segmented, output_labels) if objects.has_unedited_segmented: output_objects.unedited_segmented = copy_labels( objects.unedited_segmented, output_labels) output_objects.parent_image = objects.parent_image workspace.object_set.add_objects(output_objects, self.output_objects_name.value) measurements = workspace.measurements add_object_count_measurements( measurements, self.output_objects_name.value, np.max(output_objects.segmented), ) add_object_location_measurements(measurements, self.output_objects_name.value, output_objects.segmented) # # Relate the output objects to the input ones and record # the relationship. # children_per_parent, parents_of_children = objects.relate_children( output_objects) measurements.add_measurement( self.objects_name.value, FF_CHILDREN_COUNT % self.output_objects_name.value, children_per_parent, ) measurements.add_measurement( self.output_objects_name.value, FF_PARENT % self.objects_name.value, parents_of_children, ) if self.show_window: workspace.display_data.orig_labels = objects.segmented workspace.display_data.output_labels = output_objects.segmented if self.merge_option == UNIFY_PARENT: workspace.display_data.parent_labels = workspace.object_set.get_objects( self.parent_object.value).segmented
def run(self, workspace): """Run the module on the current data set workspace - has the current image set, object set, measurements and the parent frame for the application if the module is allowed to display. If the module should not display, workspace.frame is None. """ # # The object set holds "objects". Each of these is a container # for holding up to three kinds of image labels. # object_set = workspace.object_set # # Get the primary objects (the centers to be removed). # Get the string value out of primary_object_name. # primary_objects = object_set.get_objects( self.primary_objects_name.value) # # Get the cleaned-up labels image # primary_labels = primary_objects.segmented # # Do the same with the secondary object secondary_objects = object_set.get_objects( self.secondary_objects_name.value) secondary_labels = secondary_objects.segmented # # If one of the two label images is smaller than the other, we # try to find the cropping mask and we apply that mask to the larger # try: if any([ p_size < s_size for p_size, s_size in zip( primary_labels.shape, secondary_labels.shape) ]): # # Look for a cropping mask associated with the primary_labels # and apply that mask to resize the secondary labels # secondary_labels = primary_objects.crop_image_similarly( secondary_labels) tertiary_image = primary_objects.parent_image elif any([ p_size > s_size for p_size, s_size in zip( primary_labels.shape, secondary_labels.shape) ]): primary_labels = secondary_objects.crop_image_similarly( primary_labels) tertiary_image = secondary_objects.parent_image elif secondary_objects.parent_image is not None: tertiary_image = secondary_objects.parent_image else: tertiary_image = primary_objects.parent_image except ValueError: # No suitable cropping - resize all to fit the secondary # labels which are the most critical. # primary_labels, _ = cpo.size_similarly(secondary_labels, primary_labels) if secondary_objects.parent_image is not None: tertiary_image = secondary_objects.parent_image else: tertiary_image = primary_objects.parent_image if tertiary_image is not None: tertiary_image, _ = cpo.size_similarly( secondary_labels, tertiary_image) # If size/shape differences were too extreme, raise an error. if primary_labels.shape != secondary_labels.shape: raise ValueError( "This module requires that the object sets have matching widths and matching heights.\n" "The %s and %s objects do not (%s vs %s).\n" "If they are paired correctly you may want to use the ResizeObjects module " "to make them the same size." % ( self.secondary_objects_name, self.primary_objects_name, secondary_labels.shape, primary_labels.shape, )) # # Find the outlines of the primary image and use this to shrink the # primary image by one. This guarantees that there is something left # of the secondary image after subtraction # primary_outline = outline(primary_labels) tertiary_labels = secondary_labels.copy() if self.shrink_primary: primary_mask = np.logical_or(primary_labels == 0, primary_outline) else: primary_mask = primary_labels == 0 tertiary_labels[primary_mask == False] = 0 # # Get the outlines of the tertiary image # tertiary_outlines = outline(tertiary_labels) != 0 # # Make the tertiary objects container # tertiary_objects = cpo.Objects() tertiary_objects.segmented = tertiary_labels tertiary_objects.parent_image = tertiary_image # # Relate tertiary objects to their parents & record # child_count_of_secondary, secondary_parents = secondary_objects.relate_children( tertiary_objects) if self.shrink_primary: child_count_of_primary, primary_parents = primary_objects.relate_children( tertiary_objects) else: # Primary and tertiary don't overlap. # Establish overlap between primary and secondary and commute _, secondary_of_primary = secondary_objects.relate_children( primary_objects) mask = secondary_of_primary != 0 child_count_of_primary = np.zeros(mask.shape, int) child_count_of_primary[mask] = child_count_of_secondary[ secondary_of_primary[mask] - 1] primary_parents = np.zeros(secondary_parents.shape, secondary_parents.dtype) primary_of_secondary = np.zeros(secondary_objects.count + 1, int) primary_of_secondary[secondary_of_primary] = np.arange( 1, len(secondary_of_primary) + 1) primary_of_secondary[0] = 0 primary_parents = primary_of_secondary[secondary_parents] # # Write out the objects # workspace.object_set.add_objects(tertiary_objects, self.subregion_objects_name.value) # # Write out the measurements # m = workspace.measurements # # The parent/child associations # for parent_objects_name, parents_of, child_count, relationship in ( ( self.primary_objects_name, primary_parents, child_count_of_primary, R_REMOVED, ), ( self.secondary_objects_name, secondary_parents, child_count_of_secondary, R_PARENT, ), ): m.add_measurement( self.subregion_objects_name.value, cellprofiler_core.measurement.FF_PARENT % parent_objects_name.value, parents_of, ) m.add_measurement( parent_objects_name.value, cellprofiler_core.measurement.FF_CHILDREN_COUNT % self.subregion_objects_name.value, child_count, ) mask = parents_of != 0 image_number = np.ones(np.sum(mask), int) * m.image_set_number child_object_number = np.argwhere(mask).flatten() + 1 parent_object_number = parents_of[mask] m.add_relate_measurement( self.module_num, relationship, parent_objects_name.value, self.subregion_objects_name.value, image_number, parent_object_number, image_number, child_object_number, ) object_count = tertiary_objects.count # # The object count # cpmi.add_object_count_measurements(workspace.measurements, self.subregion_objects_name.value, object_count) # # The object locations # cpmi.add_object_location_measurements( workspace.measurements, self.subregion_objects_name.value, tertiary_labels) if self.show_window: workspace.display_data.primary_labels = primary_labels workspace.display_data.secondary_labels = secondary_labels workspace.display_data.tertiary_labels = tertiary_labels workspace.display_data.tertiary_outlines = tertiary_outlines
def run(self, workspace): """Run the module on an image set""" object_name = self.object_name.value remaining_object_name = self.remaining_objects.value original_objects = workspace.object_set.get_objects(object_name) if self.mask_choice == MC_IMAGE: mask = workspace.image_set.get_image(self.masking_image.value, must_be_binary=True) mask = mask.pixel_data else: masking_objects = workspace.object_set.get_objects( self.masking_objects.value) mask = masking_objects.segmented > 0 if self.wants_inverted_mask: mask = ~mask # # Load the labels # labels = original_objects.segmented.copy() nobjects = np.max(labels) # # Resize the mask to cover the objects # mask, m1 = cpo.size_similarly(labels, mask) mask[~m1] = False # # Apply the mask according to the overlap choice. # if nobjects == 0: pass elif self.overlap_choice == P_MASK: labels = labels * mask else: pixel_counts = fix( scind.sum(mask, labels, np.arange(1, nobjects + 1, dtype=np.int32))) if self.overlap_choice == P_KEEP: keep = pixel_counts > 0 else: total_pixels = fix( scind.sum( np.ones(labels.shape), labels, np.arange(1, nobjects + 1, dtype=np.int32), )) if self.overlap_choice == P_REMOVE: keep = pixel_counts == total_pixels elif self.overlap_choice == P_REMOVE_PERCENTAGE: fraction = self.overlap_fraction.value keep = pixel_counts / total_pixels >= fraction else: raise NotImplementedError( "Unknown overlap-handling choice: %s", self.overlap_choice.value) keep = np.hstack(([False], keep)) labels[~keep[labels]] = 0 # # Renumber the labels matrix if requested # if self.retain_or_renumber == R_RENUMBER: unique_labels = np.unique(labels[labels != 0]) indexer = np.zeros(nobjects + 1, int) indexer[unique_labels] = np.arange(1, len(unique_labels) + 1) labels = indexer[labels] parent_objects = unique_labels else: parent_objects = np.arange(1, nobjects + 1) # # Add the objects # remaining_objects = cpo.Objects() remaining_objects.segmented = labels remaining_objects.unedited_segmented = original_objects.unedited_segmented workspace.object_set.add_objects(remaining_objects, remaining_object_name) # # Add measurements # m = workspace.measurements m.add_measurement( remaining_object_name, cellprofiler_core.measurement.FF_PARENT % object_name, parent_objects, ) if np.max(original_objects.segmented) == 0: child_count = np.array([], int) else: child_count = fix( scind.sum( labels, original_objects.segmented, np.arange(1, nobjects + 1, dtype=np.int32), )) child_count = (child_count > 0).astype(int) m.add_measurement( object_name, cellprofiler_core.measurement.FF_CHILDREN_COUNT % remaining_object_name, child_count, ) if self.retain_or_renumber == R_RETAIN: remaining_object_count = nobjects else: remaining_object_count = len(unique_labels) I.add_object_count_measurements(m, remaining_object_name, remaining_object_count) I.add_object_location_measurements(m, remaining_object_name, labels) # # Save the input, mask and output images for display # if self.show_window: workspace.display_data.original_labels = original_objects.segmented workspace.display_data.final_labels = labels workspace.display_data.mask = mask
def run(self, workspace): """Run the algorithm on one image set""" # # Get the image as a binary image # image_set = workspace.image_set image = image_set.get_image(self.image_name.value, must_be_binary=True) mask = image.pixel_data if image.has_mask: mask = mask & image.mask angle_count = self.angle_count.value # # We collect the i,j and angle of pairs of points that # are 3-d adjacent after erosion. # # i - the i coordinate of each point found after erosion # j - the j coordinate of each point found after erosion # a - the angle of the structuring element for each point found # i = np.zeros(0, int) j = np.zeros(0, int) a = np.zeros(0, int) ig, jg = np.mgrid[0:mask.shape[0], 0:mask.shape[1]] this_idx = 0 for angle_number in range(angle_count): angle = float(angle_number) * np.pi / float(angle_count) strel = self.get_diamond(angle) erosion = binary_erosion(mask, strel) # # Accumulate the count, i, j and angle for all foreground points # in the erosion # this_count = np.sum(erosion) i = np.hstack((i, ig[erosion])) j = np.hstack((j, jg[erosion])) a = np.hstack((a, np.ones(this_count, float) * angle)) # # Find connections based on distances, not adjacency # first, second = self.find_adjacent_by_distance(i, j, a) # # Do all connected components. # if len(first) > 0: ij_labels = all_connected_components(first, second) + 1 nlabels = np.max(ij_labels) label_indexes = np.arange(1, nlabels + 1) # # Compute the measurements # center_x = fix(mean_of_labels(j, ij_labels, label_indexes)) center_y = fix(mean_of_labels(i, ij_labels, label_indexes)) # # The angles are wierdly complicated because of the wrap-around. # You can imagine some horrible cases, like a circular patch of # "worm" in which all angles are represented or a gentle "U" # curve. # # For now, I'm going to use the following heuristic: # # Compute two different "angles". The angles of one go # from 0 to 180 and the angles of the other go from -90 to 90. # Take the variance of these from the mean and # choose the representation with the lowest variance. # # An alternative would be to compute the variance at each possible # dividing point. Another alternative would be to actually trace through # the connected components - both overkill for such an inconsequential # measurement I hope. # angles = fix(mean_of_labels(a, ij_labels, label_indexes)) vangles = fix( mean_of_labels((a - angles[ij_labels - 1])**2, ij_labels, label_indexes)) aa = a.copy() aa[a > np.pi / 2] -= np.pi aangles = fix(mean_of_labels(aa, ij_labels, label_indexes)) vaangles = fix( mean_of_labels((aa - aangles[ij_labels - 1])**2, ij_labels, label_indexes)) aangles[aangles < 0] += np.pi angles[vaangles < vangles] = aangles[vaangles < vangles] # # Squish the labels to 2-d. The labels for overlaps are arbitrary. # labels = np.zeros(mask.shape, int) labels[i, j] = ij_labels else: center_x = np.zeros(0, int) center_y = np.zeros(0, int) angles = np.zeros(0) nlabels = 0 label_indexes = np.zeros(0, int) labels = np.zeros(mask.shape, int) m = workspace.measurements assert isinstance(m, cpmeas.Measurements) object_name = self.object_name.value m.add_measurement(object_name, cellprofiler_core.measurement.M_LOCATION_CENTER_X, center_x) m.add_measurement(object_name, cellprofiler_core.measurement.M_LOCATION_CENTER_Y, center_y) m.add_measurement(object_name, M_ANGLE, angles * 180 / np.pi) m.add_measurement(object_name, cellprofiler_core.measurement.M_NUMBER_OBJECT_NUMBER, label_indexes) m.add_image_measurement( cellprofiler_core.measurement.FF_COUNT % object_name, nlabels) # # Make the objects # object_set = workspace.object_set assert isinstance(object_set, cpo.ObjectSet) objects = cpo.Objects() objects.segmented = labels objects.parent_image = image object_set.add_objects(objects, object_name) if self.show_window: workspace.display_data.i = center_y workspace.display_data.j = center_x workspace.display_data.angle = angles workspace.display_data.mask = mask workspace.display_data.labels = labels workspace.display_data.count = nlabels
def run(self, workspace): """Run the module workspace - The workspace contains pipeline - instance of cpp for this run image_set - the images in the image set being processed object_set - the objects (labeled masks) in this image set measurements - the measurements for this run frame - the parent frame to whatever frame is created. None means don't draw. """ orig_objects_name = self.object_name.value filtered_objects_name = self.filtered_objects.value orig_objects = workspace.object_set.get_objects(orig_objects_name) assert isinstance(orig_objects, cpo.Objects) orig_labels = [l for l, c in orig_objects.get_labels()] if self.wants_image_display: guide_image = workspace.image_set.get_image(self.image_name.value) guide_image = guide_image.pixel_data if np.any(guide_image != np.min(guide_image)): guide_image = (guide_image - np.min(guide_image)) / ( np.max(guide_image) - np.min(guide_image)) else: guide_image = None filtered_labels = workspace.interaction_request( self, orig_labels, guide_image, workspace.measurements.image_set_number) if filtered_labels is None: # Ask whoever is listening to stop doing stuff workspace.cancel_request() # Have to soldier on until the cancel takes effect... filtered_labels = orig_labels # # Renumber objects consecutively if asked to do so # unique_labels = np.unique(np.array(filtered_labels)) unique_labels = unique_labels[unique_labels != 0] object_count = len(unique_labels) if self.renumber_choice == R_RENUMBER: mapping = np.zeros( 1 if len(unique_labels) == 0 else np.max(unique_labels) + 1, int) mapping[unique_labels] = np.arange(1, object_count + 1) filtered_labels = [mapping[l] for l in filtered_labels] # # Make the objects out of the labels # filtered_objects = cpo.Objects() i, j = np.mgrid[0:filtered_labels[0].shape[0], 0:filtered_labels[0].shape[1]] ijv = np.zeros((0, 3), filtered_labels[0].dtype) for l in filtered_labels: ijv = np.vstack( (ijv, np.column_stack((i[l != 0], j[l != 0], l[l != 0])))) filtered_objects.set_ijv(ijv, orig_labels[0].shape) if orig_objects.has_unedited_segmented(): filtered_objects.unedited_segmented = orig_objects.unedited_segmented if orig_objects.parent_image is not None: filtered_objects.parent_image = orig_objects.parent_image workspace.object_set.add_objects(filtered_objects, filtered_objects_name) # # Add parent/child & other measurements # m = workspace.measurements child_count, parents = orig_objects.relate_children(filtered_objects) m.add_measurement( filtered_objects_name, cellprofiler_core.measurement.FF_PARENT % orig_objects_name, parents, ) m.add_measurement( orig_objects_name, cellprofiler_core.measurement.FF_CHILDREN_COUNT % filtered_objects_name, child_count, ) # # The object count # I.add_object_count_measurements(m, filtered_objects_name, object_count) # # The object locations # I.add_object_location_measurements_ijv(m, filtered_objects_name, ijv) workspace.display_data.orig_ijv = orig_objects.ijv workspace.display_data.filtered_ijv = filtered_objects.ijv workspace.display_data.shape = orig_labels[0].shape
def run(self, workspace): '''Run the algorithm on one image set''' # # Get the image as a binary image # image_set = workspace.image_set image = image_set.get_image(self.image_name.value, must_be_binary = True) mask = image.pixel_data if image.has_mask: mask = mask & image.mask angle_count = self.angle_count.value # # We collect the i,j and angle of pairs of points that # are 3-d adjacent after erosion. # # i - the i coordinate of each point found after erosion # j - the j coordinate of each point found after erosion # a - the angle of the structuring element for each point found # i = np.zeros(0, int) j = np.zeros(0, int) a = np.zeros(0, int) ig, jg = np.mgrid[0:mask.shape[0], 0:mask.shape[1]] #this_idx = 0 for angle_number in range(angle_count): angle = float(angle_number) * np.pi / float(angle_count) strel = self.get_diamond(angle) erosion = binary_erosion(mask, strel) # # Accumulate the count, i, j and angle for all foreground points # in the erosion # this_count = np.sum(erosion) i = np.hstack((i, ig[erosion])) j = np.hstack((j, jg[erosion])) a = np.hstack((a, np.ones(this_count, float) * angle)) # # Find connections based on distances, not adjacency # first, second = self.find_adjacent_by_distance(i,j,a) # # Do all connected components. # if len(first) > 0: ij_labels = all_connected_components(first, second) + 1 nlabels = np.max(ij_labels) label_indexes = np.arange(1, nlabels + 1) # # Compute the measurements # center_x = fix(mean_of_labels(j, ij_labels, label_indexes)) center_y = fix(mean_of_labels(i, ij_labels, label_indexes)) # # The angles are wierdly complicated because of the wrap-around. # You can imagine some horrible cases, like a circular patch of # "linear object" in which all angles are represented or a gentle "U" # curve. # # For now, I'm going to use the following heuristic: # # Compute two different "angles". The angles of one go # from 0 to 180 and the angles of the other go from -90 to 90. # Take the variance of these from the mean and # choose the representation with the lowest variance. # # An alternative would be to compute the variance at each possible # dividing point. Another alternative would be to actually trace through # the connected components - both overkill for such an inconsequential # measurement I hope. # angles = fix(mean_of_labels(a, ij_labels, label_indexes)) vangles = fix(mean_of_labels((a - angles[ij_labels-1])**2, ij_labels, label_indexes)) aa = a.copy() aa[a > np.pi / 2] -= np.pi aangles = fix(mean_of_labels(aa, ij_labels, label_indexes)) vaangles = fix(mean_of_labels((aa-aangles[ij_labels-1])**2, ij_labels, label_indexes)) aangles[aangles < 0] += np.pi angles[vaangles < vangles] = aangles[vaangles < vangles] else: center_x = np.zeros(0, int) center_y = np.zeros(0, int) angles = np.zeros(0) nlabels = 0 label_indexes = np.zeros(0, int) labels = np.zeros(mask.shape, int) ifull=[] jfull=[] ij_labelsfull=[] labeldict={} for label_id in np.unique(label_indexes): r = np.array(i)*(ij_labels==label_id) r=r[r!=0] c = np.array(j)*(ij_labels==label_id) c=c[c!=0] rect_strel=self.get_rectangle(angles[label_id-1]) seedmask = np.zeros_like(mask, int) seedmask[r,c]=label_id reconstructedlinearobject=skimage.filters.rank.maximum(seedmask,rect_strel) reconstructedlinearobject=reconstructedlinearobject*mask if self.overlap_within_angle==False: itemp,jtemp=np.where(reconstructedlinearobject==label_id) ifull+=list(itemp) jfull+=list(jtemp) ij_labelsfull+=[label_id]*len(itemp) else: itemp,jtemp=np.where(reconstructedlinearobject==label_id) labeldict[label_id]=zip(itemp,jtemp) if self.overlap_within_angle==True: angledict={} for eachangle in range(len(angles)): angledict[eachangle+1]=[angles[eachangle]] nmerges=1 while nmerges!=0: nmerges=sum([self.mergeduplicates(firstlabel,secondlabel,labeldict,angledict) for firstlabel in label_indexes for secondlabel in label_indexes if firstlabel!=secondlabel]) newlabels = sorted(labeldict.keys()) newangles = sorted(angledict.keys()) angles=[] for eachnewlabel in range(len(newlabels)): ifull+=[int(eachloc[0]) for eachloc in labeldict[newlabels[eachnewlabel]]] jfull+=[int(eachloc[1]) for eachloc in labeldict[newlabels[eachnewlabel]]] ij_labelsfull+=[eachnewlabel+1]*len(labeldict[newlabels[eachnewlabel]]) angles.append(np.mean(angledict[newlabels[eachnewlabel]])) angles=np.array(angles) ijv = np.zeros([len(ifull),3],dtype=int) ijv[:,0]=ifull ijv[:,1]=jfull ijv[:,2]=ij_labelsfull # # Make the objects # object_set = workspace.object_set object_name = self.object_name.value assert isinstance(object_set, cpo.ObjectSet) objects = cpo.Objects() objects.ijv = ijv objects.parent_image = image object_set.add_objects(objects, object_name) if self.show_window: workspace.display_data.mask = mask workspace.display_data.overlapping_labels = [ l for l, idx in objects.get_labels()] if self.overlap_within_angle==True: center_x = np.bincount(ijv[:, 2], ijv[:, 1])[objects.indices] / objects.areas center_y = np.bincount(ijv[:, 2], ijv[:, 0])[objects.indices] / objects.areas m = workspace.measurements assert isinstance(m, cpmeas.Measurements) m.add_measurement(object_name, "Location_Center_X", center_x) m.add_measurement(object_name, "Location_Center_Y", center_y) m.add_measurement(object_name, M_ANGLE, angles * 180 / np.pi) m.add_measurement(object_name, "Number_Object_Number", label_indexes) m.add_image_measurement("Count_%s" % object_name, nlabels)