def filter_using_image(self, workspace, mask): '''Filter out connections using local intensity minima between objects workspace - the workspace for the image set mask - mask of background points within the minimum distance ''' # # NOTE: This is an efficient implementation and an improvement # in accuracy over the Matlab version. It would be faster and # more accurate to eliminate the line-connecting and instead # do the following: # * Distance transform to get the coordinates of the closest # point in an object for points in the background that are # at most 1/2 of the max distance between objects. # * Take the intensity at this closest point and similarly # label the background point if the background intensity # is at least the minimum intensity fraction # * Assume there is a connection between objects if, after this # labeling, there are adjacent points in each object. # # As it is, the algorithm duplicates the Matlab version but suffers # for cells whose intensity isn't high in the centroid and clearly # suffers when two cells touch at some point that's off of the line # between the two. # objects = workspace.object_set.get_objects(self.objects_name.value) labels = objects.segmented image = self.get_image(workspace) if self.show_window: # Save the image for display workspace.display_data.image = image # # Do a distance transform into the background to label points # in the background with their closest foreground object # i, j = scind.distance_transform_edt(labels == 0, return_indices=True, return_distances=False) confluent_labels = labels[i, j] confluent_labels[~mask] = 0 if self.where_algorithm == CA_CLOSEST_POINT: # # For the closest point method, find the intensity at # the closest point in the object (which will be the point itself # for points in the object). # object_intensity = image[i, j] * self.minimum_intensity_fraction.value confluent_labels[object_intensity > image] = 0 count, index, c_j = morph.find_neighbors(confluent_labels) if len(c_j) == 0: # Nobody touches - return the labels matrix return labels # # Make a row of i matching the touching j # c_i = np.zeros(len(c_j)) # # Eliminate labels without matches # label_numbers = np.arange(1, len(count) + 1)[count > 0] index = index[count > 0] count = count[count > 0] # # Get the differences between labels so we can use a cumsum trick # to increment to the next label when they change # label_numbers[1:] = label_numbers[1:] - label_numbers[:-1] c_i[index] = label_numbers c_i = np.cumsum(c_i).astype(int) if self.where_algorithm == CA_CENTROIDS: # # Only connect points > minimum intensity fraction # center_i, center_j = morph.centers_of_labels(labels) indexes, counts, i, j = morph.get_line_pts(center_i[c_i - 1], center_j[c_i - 1], center_i[c_j - 1], center_j[c_j - 1]) # # The indexes of the centroids at pt1 # last_indexes = indexes + counts - 1 # # The minimum of the intensities at pt0 and pt1 # centroid_intensities = np.minimum( image[i[indexes], j[indexes]], image[i[last_indexes], j[last_indexes]]) # # Assign label numbers to each point so we can use # scipy.ndimage.minimum. The label numbers are indexes into # "connections" above. # pt_labels = np.zeros(len(i), int) pt_labels[indexes[1:]] = 1 pt_labels = np.cumsum(pt_labels) minima = scind.minimum(image[i, j], pt_labels, np.arange(len(indexes))) minima = morph.fixup_scipy_ndimage_result(minima) # # Filter the connections using the image # mif = self.minimum_intensity_fraction.value i = c_i[centroid_intensities * mif <= minima] j = c_j[centroid_intensities * mif <= minima] else: i = c_i j = c_j # # Add in connections from self to self # unique_labels = np.unique(labels) i = np.hstack((i, unique_labels)) j = np.hstack((j, unique_labels)) # # Run "all_connected_components" to get a component # for # objects identified as same. # new_indexes = morph.all_connected_components(i, j) new_labels = np.zeros(labels.shape, int) new_labels[labels != 0] = new_indexes[labels[labels != 0]] return new_labels
def filter_using_image(self, workspace, mask): '''Filter out connections using local intensity minima between objects workspace - the workspace for the image set mask - mask of background points within the minimum distance ''' # # NOTE: This is an efficient implementation and an improvement # in accuracy over the Matlab version. It would be faster and # more accurate to eliminate the line-connecting and instead # do the following: # * Distance transform to get the coordinates of the closest # point in an object for points in the background that are # at most 1/2 of the max distance between objects. # * Take the intensity at this closest point and similarly # label the background point if the background intensity # is at least the minimum intensity fraction # * Assume there is a connection between objects if, after this # labeling, there are adjacent points in each object. # # As it is, the algorithm duplicates the Matlab version but suffers # for cells whose intensity isn't high in the centroid and clearly # suffers when two cells touch at some point that's off of the line # between the two. # objects = workspace.object_set.get_objects(self.objects_name.value) labels = objects.segmented image = self.get_image(workspace) if self.show_window: # Save the image for display workspace.display_data.image = image # # Do a distance transform into the background to label points # in the background with their closest foreground object # i, j = scind.distance_transform_edt(labels==0, return_indices=True, return_distances=False) confluent_labels = labels[i,j] confluent_labels[~mask] = 0 if self.where_algorithm == CA_CLOSEST_POINT: # # For the closest point method, find the intensity at # the closest point in the object (which will be the point itself # for points in the object). # object_intensity = image[i,j] * self.minimum_intensity_fraction.value confluent_labels[object_intensity > image] = 0 count, index, c_j = morph.find_neighbors(confluent_labels) if len(c_j) == 0: # Nobody touches - return the labels matrix return labels # # Make a row of i matching the touching j # c_i = np.zeros(len(c_j)) # # Eliminate labels without matches # label_numbers = np.arange(1,len(count)+1)[count > 0] index = index[count > 0] count = count[count > 0] # # Get the differences between labels so we can use a cumsum trick # to increment to the next label when they change # label_numbers[1:] = label_numbers[1:] - label_numbers[:-1] c_i[index] = label_numbers c_i = np.cumsum(c_i).astype(int) if self.where_algorithm == CA_CENTROIDS: # # Only connect points > minimum intensity fraction # center_i, center_j = morph.centers_of_labels(labels) indexes, counts, i, j = morph.get_line_pts( center_i[c_i-1], center_j[c_i-1], center_i[c_j-1], center_j[c_j-1]) # # The indexes of the centroids at pt1 # last_indexes = indexes+counts-1 # # The minimum of the intensities at pt0 and pt1 # centroid_intensities = np.minimum( image[i[indexes],j[indexes]], image[i[last_indexes], j[last_indexes]]) # # Assign label numbers to each point so we can use # scipy.ndimage.minimum. The label numbers are indexes into # "connections" above. # pt_labels = np.zeros(len(i), int) pt_labels[indexes[1:]] = 1 pt_labels = np.cumsum(pt_labels) minima = scind.minimum(image[i,j], pt_labels, np.arange(len(indexes))) minima = morph.fixup_scipy_ndimage_result(minima) # # Filter the connections using the image # mif = self.minimum_intensity_fraction.value i = c_i[centroid_intensities * mif <= minima] j = c_j[centroid_intensities * mif <= minima] else: i = c_i j = c_j # # Add in connections from self to self # unique_labels = np.unique(labels) i = np.hstack((i, unique_labels)) j = np.hstack((j, unique_labels)) # # Run "all_connected_components" to get a component # for # objects identified as same. # new_indexes = morph.all_connected_components(i, j) new_labels = np.zeros(labels.shape, int) new_labels[labels != 0] = new_indexes[labels[labels != 0]] return new_labels